yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2017 AP Calculus AB/BC 4b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're now going to tackle Part B of the potato problem. It says, "Use the second derivative of H with respect to time to determine whether your answer in part A is an underestimate or an overestimate of the internal temperature of the potato at time T equals three."

So, in part A, we found the equation of the tangent line at time equals zero, and we used that to estimate what our internal temperature would be at time equals three. So how is the second derivative going to help us think about whether that was an overestimate or an underestimate?

Well, the second derivative can help us know about concavity. It'll let us know, well, is our slope increasing over this interval, or is our slope decreasing? Then we can use that to estimate whether we overestimated or not.

So first, let's just find the second derivative. We have the first derivative written up here. Let me just rewrite it, and I'll distribute the -1/4 because it'll be a little bit more straightforward then. So if I write the derivative of H with respect to time, it is equal to -4 * our internal temperature, which itself is a function of time, and then - 1/4 * -27 that would be plus 27 over 4.

Let me scroll down a little bit. Now, let me leave that graph up there because I think that might be useful. What is the second derivative going to be with respect to time? So I'll write it right over here. The second derivative of H with respect to time is going to be equal to, well, the derivative of this first term with respect to time is going to be the derivative of this with respect to H times the derivative of H with respect to time.

So this is equal to -1/4; that's the derivative of this term with respect to H. Then we want to multiply that times the derivative of H with respect to time. This comes just straight out of the chain rule, and then the derivative of a constant—how does that change with respect to time? It's not going to change; that is just going to be zero.

So just like that, we were able to find the second derivative of H with respect to time. Now, what does this tell us? Well, we talked about in the previous video that over the interval that we care about—for T greater than zero—it says that our internal temperature is always going to be greater than 27.

So when you look at this expression here, or when you look at this expression here for dH/dt, we talked in the previous video how this is always going to be negative here because H is always going to be greater than 27. So that part's going to be positive. But then we're going to multiply it by -1/4, so our slope dH/dt, our derivative of our temperature with respect to time, is always going to be negative.

So we could write that this—or this—this is going to be negative. Let me write it this way: since H is greater than 27 for T greater than zero, we know that dH/dt is negative.

So we could say that this right over here, since dH/dt is less than zero for T greater than zero, the second derivative of H with respect to T is going to be greater than zero for T greater than zero. So what does that mean? It means that if your second derivative is positive, that means you're concave upward, concave upward, which means slope is increasing.

Slope increasing—or you could say, slope becoming less negative. Now, what does that mean? You can see it intuitively: if the slope is becoming less and less negative, then that means when we approximated what our temperature is at T equals 3, we used a really negative slope when in reality our slope is getting less and less and less negative.

So what we would have done is we would have over-decreased our temperature from T equals 0 to T equals 3. So that would mean that we would have underestimated it.

So let me write that down, and I'm running out of a little bit of space, but let me write it right over here. So that implies—this implies that we underestimated in part A. If I were taking this on the AP exam, I would flesh out my language a little bit here to make it a little bit clearer, but hopefully that makes sense.

More Articles

View All
My Response To FTX
What’s up, you guys? So I know this video is longer to do, but I purposely wanted to wait until I had all the facts. It could actually come to you with a concrete solution of what’s being done moving forward. To start, let’s talk about FTX US. This is a …
Elements and atomic number | Atoms, isotopes, and ions | High school chemistry | Khan Academy
We know that everything in the universe is composed of atoms, but not all atoms are the same. There are many different types of atoms called elements, each with a unique set of physical and chemical properties. Many elements are probably familiar to you; …
Using recursive formulas of geometric sequences | Mathematics I | High School Math | Khan Academy
The geometric sequence ( a_i ) is defined by the formula where the first term ( a_1 ) is equal to -1⁄8 and then every term after that is defined as being so ( a_i ) is going to be two times the term before that. So, ( ai ) is ( 2 \times a{i-1} ). What is…
Safari Live - Day 11 | National Geographic
[Music] Well, we are trying to see if we can’t find a Terrapin once again. But suppose we should say hello at first. Good afternoon, everybody, and welcome to our sunset Safari. We had a few technical issues, so we are now back with you guys, and hopefull…
How to Find the Right Mentor | Ask Mr. Wonderful Shark Tank's Kevin O'Leary
So my question is: how can a 22-year-old make himself useful or stand out to a business person that can perhaps take a risk to pull me along and teach me what are the skills and things you would need to see in a candidate to even consider teaching him? He…
The FED Just Broke The Market | Dollar Crisis Explained
What’s up guys, it’s Graham here. So, despite the Federal Reserve’s best attempt to bring down prices, as of yesterday, inflation came in at a whopping 8.2 percent, which was significantly higher than expected and a sign that things might continue getting…