yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2017 AP Calculus AB/BC 4b | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

We're now going to tackle Part B of the potato problem. It says, "Use the second derivative of H with respect to time to determine whether your answer in part A is an underestimate or an overestimate of the internal temperature of the potato at time T equals three."

So, in part A, we found the equation of the tangent line at time equals zero, and we used that to estimate what our internal temperature would be at time equals three. So how is the second derivative going to help us think about whether that was an overestimate or an underestimate?

Well, the second derivative can help us know about concavity. It'll let us know, well, is our slope increasing over this interval, or is our slope decreasing? Then we can use that to estimate whether we overestimated or not.

So first, let's just find the second derivative. We have the first derivative written up here. Let me just rewrite it, and I'll distribute the -1/4 because it'll be a little bit more straightforward then. So if I write the derivative of H with respect to time, it is equal to -4 * our internal temperature, which itself is a function of time, and then - 1/4 * -27 that would be plus 27 over 4.

Let me scroll down a little bit. Now, let me leave that graph up there because I think that might be useful. What is the second derivative going to be with respect to time? So I'll write it right over here. The second derivative of H with respect to time is going to be equal to, well, the derivative of this first term with respect to time is going to be the derivative of this with respect to H times the derivative of H with respect to time.

So this is equal to -1/4; that's the derivative of this term with respect to H. Then we want to multiply that times the derivative of H with respect to time. This comes just straight out of the chain rule, and then the derivative of a constant—how does that change with respect to time? It's not going to change; that is just going to be zero.

So just like that, we were able to find the second derivative of H with respect to time. Now, what does this tell us? Well, we talked about in the previous video that over the interval that we care about—for T greater than zero—it says that our internal temperature is always going to be greater than 27.

So when you look at this expression here, or when you look at this expression here for dH/dt, we talked in the previous video how this is always going to be negative here because H is always going to be greater than 27. So that part's going to be positive. But then we're going to multiply it by -1/4, so our slope dH/dt, our derivative of our temperature with respect to time, is always going to be negative.

So we could write that this—or this—this is going to be negative. Let me write it this way: since H is greater than 27 for T greater than zero, we know that dH/dt is negative.

So we could say that this right over here, since dH/dt is less than zero for T greater than zero, the second derivative of H with respect to T is going to be greater than zero for T greater than zero. So what does that mean? It means that if your second derivative is positive, that means you're concave upward, concave upward, which means slope is increasing.

Slope increasing—or you could say, slope becoming less negative. Now, what does that mean? You can see it intuitively: if the slope is becoming less and less negative, then that means when we approximated what our temperature is at T equals 3, we used a really negative slope when in reality our slope is getting less and less and less negative.

So what we would have done is we would have over-decreased our temperature from T equals 0 to T equals 3. So that would mean that we would have underestimated it.

So let me write that down, and I'm running out of a little bit of space, but let me write it right over here. So that implies—this implies that we underestimated in part A. If I were taking this on the AP exam, I would flesh out my language a little bit here to make it a little bit clearer, but hopefully that makes sense.

More Articles

View All
Revolving vs installment credit | Loans and debt | Financial literacy | Khan Academy
So, let’s talk about two very broad categories of loans. One is installment loans, and one is revolving loans or revolving credit. If we’re talking about installment loans or installment credit, that’s a situation where you’re borrowing one usually large…
Examples identifying multiples
In this video, we’re going to start thinking about what it means for something to be a multiple of a number. So we’re asked which of the following numbers is a multiple of 9. So pause this video and see if you can figure that out. All right, now let’s do…
Khan Academy Ed Talks with Barbara Oakley, Phd - Thursday, June 15
Hello and welcome to Ed Talks with Khan Academy, where we talk to influential people in the education space about learning and teaching. Today, we are pleased to welcome Dr. Barbara Oakley, who is celebrating the launch of her new book, Uncommon Sense Tea…
YC SUS: Eric Migicovsky & Dalton Caldwell discuss pivoting & pitching
Nope, not live. Almost live. Now we’re live. Okay! My name is Eric Makovski. I’m the startup school course facilitator. Welcome to another live Q&A. We’re joined today by Dalton. “How’s it going?” I’m Dalton Caldwell. I’m a partner at Y Combinator. …
The 5 BEST Credit Cards For Beginners In 2023
What’s up guys, it’s Graham here! So a year ago, I made a video going over the best credit cards of 2021. However, recently I realized that there’s a bit of a problem in that today is the future, and thanks to the introduction of some new credit cards, w…
Scouting for Wildlife in Big Bend National Park | National Geographic
So it looks like we got some animal activity already. Hold on. Don’t come down any further. We’re here at probably one of the most beautiful spots that you can see in Big Bend National Park, Santa Elena Canyon. I am scouting for National Geographic right …