yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: table | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification.

Well, to use the mean value theorem, you have to be differentiable over the open interval and continuous over the closed interval. So, it seems like we've met that because if you're differentiable over an interval, you're definitely continuous over that interval. It's saying that it's just a generally differentiable function f, I guess, over any interval.

But the next part is to say, all right, that if that condition is met, then the slope of the secant line between (4, f(4)) and (6, f(6)) suggests that at least one point in between 4 and 6 will have a derivative that is equal to the slope of the secant line. So, let's figure out what the slope of the secant line is between (4, f(4)) and (6, f(6)). If it's equal to 5, then we could use the mean value theorem. If it's not equal to 5, then the mean value theorem would not apply.

And so, let's do that: f(6) minus f(4), all of that over (6 - 4) is equal to (7 - 3) over 2, which is equal to 2. So, 2 is not equal to 5. So, the mean value theorem doesn't apply. All right, let's put an exclamation point there for emphasis.

All right, let's do the next part. Can we use the mean value theorem to say that the equation f prime of x is equal to negative one has a solution, and now the interval is from 0 to 2? If so, write a justification.

All right, so let's see this. If we were to take the slope of the secant line: f(2) minus f(0), all that over (2 - 0) is equal to (-2 - 0) all of that over 2, which is equal to (-2 over 2), which is equal to -1. And so, we also know that we meet the continuity and differentiability conditions.

And so, we could say that since f is generally differentiable, it will be differentiable and continuous over the interval from 0 to 2. To say the closed interval, you just have to be differentiable over the open interval, but it's even better, I guess, if you're differentiable over the closed interval because you have to be continuous over the closed interval.

And since f is generally differentiable, it will be differentiable and continuous over (0, 2). So, the mean value theorem tells us that there is an x in that interval from 0 to 2 such that f prime of x is equal to that secant slope, or you could say that the average rate of change is equal to -1.

And so, I could write yes, yes! And then this would be my justification: This is the slope of the secant line, or the average rate of change. Since f is generally differentiable, it will be differentiable and continuous over the closed interval. So, the mean value theorem tells us that there is an x in this interval such that f prime of x is equal to -1. And we're done.

More Articles

View All
DON'T TRUST THE STOCK MARKET | WHAT YOU MUST KNOW!
What’s up guys, it’s Graham here. So it’s official: as of May 26, the S&P 500 did something that very few people would have ever expected to happen a few months ago. It crossed above the very important psychological threshold of—wait for it—3,000. Tha…
Did I quit med school? | How I'm spending my days living alone in Rome 🇮🇹 LIFE UPDATE
[Music] foreign [Music] Good morning everyone! Today is another day, and I’m going to take you guys along with what I do in the day because a lot of you guys have been asking: “Don’t you have med school? What are you doing today? What are you doing with …
Meta's Moment of Truth (Facebook's Ad Problem Explained)
Mark Zuckerberg is dark in the door of Capitol Hill. Facebook is scrambling to contain the fallout; it’s facing a real threat to its cultural relevance. Do you think, in the wake of all these revelations, Facebook’s gonna make any changes? It is an extra…
Endangered Penguins of South Africa - 360 | National Geographic
We now have approximately 2% of the historical natural population of African penguins. That’s the population that was recorded in the late 1800s. There have been several threats to penguins: egg collection, people collecting them, and more recently, the m…
Why Do We Play Games?
Hey, Vsauce. Michael here. Why do humans play games? Whether it’s a video game or a board game or a physical game, like soccer - or football. I don’t have to put the ball in the net to survive, and, even if I did, why would I invite a goalie and another …
Transformations - dilation
In previous videos, we started talking about the idea of transformations. In particular, we talked about rigid transformations. So, for example, you can shift something; this would be a translation. So the thing that I’m moving around is a translation of…