yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: table | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification.

Well, to use the mean value theorem, you have to be differentiable over the open interval and continuous over the closed interval. So, it seems like we've met that because if you're differentiable over an interval, you're definitely continuous over that interval. It's saying that it's just a generally differentiable function f, I guess, over any interval.

But the next part is to say, all right, that if that condition is met, then the slope of the secant line between (4, f(4)) and (6, f(6)) suggests that at least one point in between 4 and 6 will have a derivative that is equal to the slope of the secant line. So, let's figure out what the slope of the secant line is between (4, f(4)) and (6, f(6)). If it's equal to 5, then we could use the mean value theorem. If it's not equal to 5, then the mean value theorem would not apply.

And so, let's do that: f(6) minus f(4), all of that over (6 - 4) is equal to (7 - 3) over 2, which is equal to 2. So, 2 is not equal to 5. So, the mean value theorem doesn't apply. All right, let's put an exclamation point there for emphasis.

All right, let's do the next part. Can we use the mean value theorem to say that the equation f prime of x is equal to negative one has a solution, and now the interval is from 0 to 2? If so, write a justification.

All right, so let's see this. If we were to take the slope of the secant line: f(2) minus f(0), all that over (2 - 0) is equal to (-2 - 0) all of that over 2, which is equal to (-2 over 2), which is equal to -1. And so, we also know that we meet the continuity and differentiability conditions.

And so, we could say that since f is generally differentiable, it will be differentiable and continuous over the interval from 0 to 2. To say the closed interval, you just have to be differentiable over the open interval, but it's even better, I guess, if you're differentiable over the closed interval because you have to be continuous over the closed interval.

And since f is generally differentiable, it will be differentiable and continuous over (0, 2). So, the mean value theorem tells us that there is an x in that interval from 0 to 2 such that f prime of x is equal to that secant slope, or you could say that the average rate of change is equal to -1.

And so, I could write yes, yes! And then this would be my justification: This is the slope of the secant line, or the average rate of change. Since f is generally differentiable, it will be differentiable and continuous over the closed interval. So, the mean value theorem tells us that there is an x in this interval such that f prime of x is equal to -1. And we're done.

More Articles

View All
Thousands of Cranes Take Flight in One of Earth's Last Great Migrations | National Geographic
[Music] This is, I think, without doubt, one of the most spectacular migrations that you can witness in North America, if not the most spectacular. There’s just something really uplifting and inspiring about them, and people all over the world have felt t…
Introduction to remainders
We’re already somewhat familiar with the idea of division. If I were to say 8 divided by 2, you could think of that as 8 objects: 1, 2, 3, 4, 5, 6, 7, 8. Divided into equal groups of two. So how many equal groups of two could you have? Well, you could hav…
Porcupine Proofing a Cabin | Life Below Zero
You guys ready? Yeah, there you go, a little buddy, dump him out. [Music] It’s so cute! Just stay calm, let him go, let him go. He wants to go to the wello line. Run, run to the forest! Porcupine chase was a lot of fun. A lot more fun having the kids with…
Tidepooling along the Pacific Coast | National Geographic
Nature, the most powerful creative force on Earth. I’m Chef Melissa King. Cooking has taken me to incredible places. Magical. (laughs) From TV competitions and celebrity galas to countries around the world, I’m heading out to places I’ve never been before…
Jim Crow part 2 | The Gilded Age (1865-1898) | US History | Khan Academy
So, in the last video, we started talking about the system of Jim Crow segregation, which was a legal form of segregation and denial of voting rights or disenfranchisement that characterized the American South from approximately 1877 to 1954. We finished …
Can You Perceive Acceleration?
Have you ever considered how your eye scans across a landscape? I think most people assume that, like a video camera, it pans smoothly across the scene. But I don’t actually think that’s what happens. In truth, I think the eye jumps from image to image as…