yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: table | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification.

Well, to use the mean value theorem, you have to be differentiable over the open interval and continuous over the closed interval. So, it seems like we've met that because if you're differentiable over an interval, you're definitely continuous over that interval. It's saying that it's just a generally differentiable function f, I guess, over any interval.

But the next part is to say, all right, that if that condition is met, then the slope of the secant line between (4, f(4)) and (6, f(6)) suggests that at least one point in between 4 and 6 will have a derivative that is equal to the slope of the secant line. So, let's figure out what the slope of the secant line is between (4, f(4)) and (6, f(6)). If it's equal to 5, then we could use the mean value theorem. If it's not equal to 5, then the mean value theorem would not apply.

And so, let's do that: f(6) minus f(4), all of that over (6 - 4) is equal to (7 - 3) over 2, which is equal to 2. So, 2 is not equal to 5. So, the mean value theorem doesn't apply. All right, let's put an exclamation point there for emphasis.

All right, let's do the next part. Can we use the mean value theorem to say that the equation f prime of x is equal to negative one has a solution, and now the interval is from 0 to 2? If so, write a justification.

All right, so let's see this. If we were to take the slope of the secant line: f(2) minus f(0), all that over (2 - 0) is equal to (-2 - 0) all of that over 2, which is equal to (-2 over 2), which is equal to -1. And so, we also know that we meet the continuity and differentiability conditions.

And so, we could say that since f is generally differentiable, it will be differentiable and continuous over the interval from 0 to 2. To say the closed interval, you just have to be differentiable over the open interval, but it's even better, I guess, if you're differentiable over the closed interval because you have to be continuous over the closed interval.

And since f is generally differentiable, it will be differentiable and continuous over (0, 2). So, the mean value theorem tells us that there is an x in that interval from 0 to 2 such that f prime of x is equal to that secant slope, or you could say that the average rate of change is equal to -1.

And so, I could write yes, yes! And then this would be my justification: This is the slope of the secant line, or the average rate of change. Since f is generally differentiable, it will be differentiable and continuous over the closed interval. So, the mean value theorem tells us that there is an x in this interval such that f prime of x is equal to -1. And we're done.

More Articles

View All
Angular velocity and speed | Uniform circular motion and gravitation | AP Physics 1 | Khan Academy
What we’re going to do in this video is look at a tangible example where we calculate angular velocity. But then, we’re going to see if we can connect that to the notion of speed. So let’s start with this example, where once again we have some type of a …
Can Silence Actually Drive You Crazy?
I am going to scream as loud as I can, and I am going to keep screaming as loud as I can while I spin around. I will keep going until my breath runs out. Great. You ready? Yeah. Ok. [Screams] That was outstanding. Thank you. Thank you. The quietest …
15 Things to Avoid If You Want to Grow
Growing and evolving in life is a wonderful journey that we all want to experience, right? It’s a bit like planting a tiny seed and then caring for it so it can grow into a strong, magnificent tree. But as we move forward, there are some catches that we s…
Using matrices to manipulate data: Game show | Matrices | Precalculus | Khan Academy
We’re told in the beginning of each episode of a certain game show. Each contestant picks a certain door out of three doors. Then the game show host randomly picks one of the two prize bundles. After each round, each contestant receives a prize based on t…
Adding and subtracting polynomials of degree one | Algebra 1 (TX TEKS) | Khan Academy
Let’s say that a is equal to 6 m - 4 N minus 7 p, and let’s also say that b is equal to 7 m - 3 n + 5 P. What I want to do in this video is figure out what is a + b equal to, and I want to express that in terms of M’s, n’s, and P’s. I want to use as few t…
Apoptosis | Cell division | Biology | Khan Academy
Hello Emily, hello David. So we’re here today to talk about apoptosis. Uh, I was going to ask you some questions about it; you were going to explain what it even is to me. Absolutely. Okay, talk apoptosis. So, this word apoptosis—I did a little bit of …