yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: table | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification.

Well, to use the mean value theorem, you have to be differentiable over the open interval and continuous over the closed interval. So, it seems like we've met that because if you're differentiable over an interval, you're definitely continuous over that interval. It's saying that it's just a generally differentiable function f, I guess, over any interval.

But the next part is to say, all right, that if that condition is met, then the slope of the secant line between (4, f(4)) and (6, f(6)) suggests that at least one point in between 4 and 6 will have a derivative that is equal to the slope of the secant line. So, let's figure out what the slope of the secant line is between (4, f(4)) and (6, f(6)). If it's equal to 5, then we could use the mean value theorem. If it's not equal to 5, then the mean value theorem would not apply.

And so, let's do that: f(6) minus f(4), all of that over (6 - 4) is equal to (7 - 3) over 2, which is equal to 2. So, 2 is not equal to 5. So, the mean value theorem doesn't apply. All right, let's put an exclamation point there for emphasis.

All right, let's do the next part. Can we use the mean value theorem to say that the equation f prime of x is equal to negative one has a solution, and now the interval is from 0 to 2? If so, write a justification.

All right, so let's see this. If we were to take the slope of the secant line: f(2) minus f(0), all that over (2 - 0) is equal to (-2 - 0) all of that over 2, which is equal to (-2 over 2), which is equal to -1. And so, we also know that we meet the continuity and differentiability conditions.

And so, we could say that since f is generally differentiable, it will be differentiable and continuous over the interval from 0 to 2. To say the closed interval, you just have to be differentiable over the open interval, but it's even better, I guess, if you're differentiable over the closed interval because you have to be continuous over the closed interval.

And since f is generally differentiable, it will be differentiable and continuous over (0, 2). So, the mean value theorem tells us that there is an x in that interval from 0 to 2 such that f prime of x is equal to that secant slope, or you could say that the average rate of change is equal to -1.

And so, I could write yes, yes! And then this would be my justification: This is the slope of the secant line, or the average rate of change. Since f is generally differentiable, it will be differentiable and continuous over the closed interval. So, the mean value theorem tells us that there is an x in this interval such that f prime of x is equal to -1. And we're done.

More Articles

View All
Homeroom with Sal & Tom Inglesby, MD - Tuesday, September 8
Welcome to the Homeroom livestream. We have a very exciting conversation planned, but before we dive into that, I’ll give you my standard announcements. First of all, just a reminder that Khan Academy is a not-for-profit organization, and we wouldn’t exis…
The Odd Number Rule
Hey, Vsauce, Michael here. Why though? Why are any of us here? What’s the purpose? What does it all mean? Well, sometimes if we listen closely enough when we ask why, we can hear an answer, and it’s another question: Why? Why? What? Our journey begins he…
Solving equations by graphing: graphing calculator | Algebra 2 | Khan Academy
We are told we want to solve the following equation: that the negative natural log of 2x is equal to 2 times the absolute value of x minus 4, all of that minus 7. One of the solutions is x is equal to 0.5. Find the other solution. They say hint: use a gra…
Building the Wolf Pack | Badlands, Texas
That was my jury. I really think that was obviously a good jury that we had. I’ve come to look at the jury like a wolf pack that you’re about to get, and you’re about to put that pack together. So you’ve got to pick you an alpha leader. Then you’re going …
Charlie Munger's Final Advice For 2024.
I basically believe in a soldier on system. Lots of hardship will come, and you got to handle it well. I soldering through Charlie Munger, sadly passed away in November 2023, one month shy of his 100th birthday. But in a big stroke of luck for us investor…
Why do we launch rockets from Florida?
Why do we launch rockets in Florida? I remember as a kid just not getting it as I watched these rocket launches get scrubbed due to bad weather. I was like, you guys know that’s Florida, right? That’s where they get the hurricanes and the thunderstorms. A…