yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: table | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification.

Well, to use the mean value theorem, you have to be differentiable over the open interval and continuous over the closed interval. So, it seems like we've met that because if you're differentiable over an interval, you're definitely continuous over that interval. It's saying that it's just a generally differentiable function f, I guess, over any interval.

But the next part is to say, all right, that if that condition is met, then the slope of the secant line between (4, f(4)) and (6, f(6)) suggests that at least one point in between 4 and 6 will have a derivative that is equal to the slope of the secant line. So, let's figure out what the slope of the secant line is between (4, f(4)) and (6, f(6)). If it's equal to 5, then we could use the mean value theorem. If it's not equal to 5, then the mean value theorem would not apply.

And so, let's do that: f(6) minus f(4), all of that over (6 - 4) is equal to (7 - 3) over 2, which is equal to 2. So, 2 is not equal to 5. So, the mean value theorem doesn't apply. All right, let's put an exclamation point there for emphasis.

All right, let's do the next part. Can we use the mean value theorem to say that the equation f prime of x is equal to negative one has a solution, and now the interval is from 0 to 2? If so, write a justification.

All right, so let's see this. If we were to take the slope of the secant line: f(2) minus f(0), all that over (2 - 0) is equal to (-2 - 0) all of that over 2, which is equal to (-2 over 2), which is equal to -1. And so, we also know that we meet the continuity and differentiability conditions.

And so, we could say that since f is generally differentiable, it will be differentiable and continuous over the interval from 0 to 2. To say the closed interval, you just have to be differentiable over the open interval, but it's even better, I guess, if you're differentiable over the closed interval because you have to be continuous over the closed interval.

And since f is generally differentiable, it will be differentiable and continuous over (0, 2). So, the mean value theorem tells us that there is an x in that interval from 0 to 2 such that f prime of x is equal to that secant slope, or you could say that the average rate of change is equal to -1.

And so, I could write yes, yes! And then this would be my justification: This is the slope of the secant line, or the average rate of change. Since f is generally differentiable, it will be differentiable and continuous over the closed interval. So, the mean value theorem tells us that there is an x in this interval such that f prime of x is equal to -1. And we're done.

More Articles

View All
How Investments Scams Work | Trafficked with Mariana van Zeller
[Music] While scamming in Jamaica brings in hundreds of millions of dollars a year, scamming in Israel is reported to bring in billions. I want to know how it works. What’s happening? You can see him. Okay, everyone ready? He’s driving up, guys. So, I ar…
Be Like Sal: 3 Ways a Tablet Can Energize Your Digital Teaching!
Thank you so much for joining today or this evening, depending on where you’re calling from. This is Jeremy Schieffen at Khan Academy, and I’m so excited they’re joining with us because if anything at Khan Academy, 2020 has been the year of the tablet. We…
Living Up Close and Personal With an Active Volcano | National Geographic
It matters that there’s a volcano. It matters. It matters a lot because that’s, um, 75% of the identity of this place. The volcano is present; the volcano is breathing. The, uh, the volcano really is a living creature. It’s a bit of a romantic representa…
The mindset that is slowly destroying your life
[Music] Ah, what a lovely weekend in the neighborhood. Susan is out walking the dog. Frank is hard at work writing his new book, and Billy is, ah yes, a classic Billy Saturday—waking up late, his mind filled with dread. There are so many things he could d…
Ramen VR (S19) - YC Tech Talks: Gaming 2020 (November 9th, 2020)
Uh, hi everyone. I’m Andy. I’m one of the co-founders at Ramen VR, and Lauren and I are my other co-founder working on Zenith, a massively multiplayer online world. Zenith is kind of like Dark Souls meets World of Warcraft in that it combines adrenaline …
I'm starting over
Hey, how’s it going? How’s life been for you recently? I just went on vacation with my family to Salita, Mexico, and it was very fun. You got to see all the street vendors, you got to see all the Mexican people, and all the white people on vacation. It wa…