yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification with the mean value theorem: table | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

The table gives selected values of the differentiable function f. All right, can we use a mean value theorem to say that there is a value c such that f prime of c is equal to 5 and c is between 4 and 6? If so, write a justification.

Well, to use the mean value theorem, you have to be differentiable over the open interval and continuous over the closed interval. So, it seems like we've met that because if you're differentiable over an interval, you're definitely continuous over that interval. It's saying that it's just a generally differentiable function f, I guess, over any interval.

But the next part is to say, all right, that if that condition is met, then the slope of the secant line between (4, f(4)) and (6, f(6)) suggests that at least one point in between 4 and 6 will have a derivative that is equal to the slope of the secant line. So, let's figure out what the slope of the secant line is between (4, f(4)) and (6, f(6)). If it's equal to 5, then we could use the mean value theorem. If it's not equal to 5, then the mean value theorem would not apply.

And so, let's do that: f(6) minus f(4), all of that over (6 - 4) is equal to (7 - 3) over 2, which is equal to 2. So, 2 is not equal to 5. So, the mean value theorem doesn't apply. All right, let's put an exclamation point there for emphasis.

All right, let's do the next part. Can we use the mean value theorem to say that the equation f prime of x is equal to negative one has a solution, and now the interval is from 0 to 2? If so, write a justification.

All right, so let's see this. If we were to take the slope of the secant line: f(2) minus f(0), all that over (2 - 0) is equal to (-2 - 0) all of that over 2, which is equal to (-2 over 2), which is equal to -1. And so, we also know that we meet the continuity and differentiability conditions.

And so, we could say that since f is generally differentiable, it will be differentiable and continuous over the interval from 0 to 2. To say the closed interval, you just have to be differentiable over the open interval, but it's even better, I guess, if you're differentiable over the closed interval because you have to be continuous over the closed interval.

And since f is generally differentiable, it will be differentiable and continuous over (0, 2). So, the mean value theorem tells us that there is an x in that interval from 0 to 2 such that f prime of x is equal to that secant slope, or you could say that the average rate of change is equal to -1.

And so, I could write yes, yes! And then this would be my justification: This is the slope of the secant line, or the average rate of change. Since f is generally differentiable, it will be differentiable and continuous over the closed interval. So, the mean value theorem tells us that there is an x in this interval such that f prime of x is equal to -1. And we're done.

More Articles

View All
Food Too "Ugly" to Sell Becomes a Feast for 5,000 People | National Geographic
Feeding the 5,000 is a celebration of the solutions to food waste, where we feed 5,000 people a delicious meal made entirely out of food that would otherwise have gone to waste. America is a country which has a massive problem of food waste. Forty percent…
Americans Are Spending Like There's No Tomorrow..
What’s up you guys, it’s Graham here, and this is getting out of hand. According to the Wall Street Journal, Americans are still spending like there’s no tomorrow, with the average consumer splurging on events, concerts, vacations, and experiences, all wh…
"YOU WON'T BELIEVE YOUR EYES!" - Smarter Every Day 142
Hey, it’s me Destin. Welcome back to Smarter Every Day. You won’t believe your eyes. You’ve heard this before, right? It’s usually like a clickbait title to get you to watch an internet video or read a stupid article. But are there cases when you actually…
How to Run a User Interview with Emmett Shear (How to Start a Startup 2014: Lecture 16)
Today’s guest speaker is Emmett Scheer. Emmett is the CEO of Twitch, which was acquired by Amazon, where he now works. Emmett is going to do a new format of class today and talk about how to do great user interviews. So this is the talking to users part o…
Project Aquatone's U-2 Spy Plane | Inside America's Secret Missions
[spooky music] NARRATOR: Area 51 was built around a dry lake bed known as Groom Lake. It offered obvious advantages. RAY GOUDEY: Well, we needed a good place to land that we could land any direction, depending on where the wind came from. And the round …
Acoustic Levitation in ULTRA SLOW MOTION - Smarter Every Day 134
Hey, it’s me Destin. Welcome back to Smarter Every Day. I am in Chicago. Anthony picked me up in his awesome Mustang and told me to come to this building because we’re gonna film acoustic levitation. What is this? This is an acoustic levitator. It’s si…