yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplication on the number line


3m read
·Nov 11, 2024

What we're going to do in this video is think about different ways to represent multiplication, and especially connect it to the notions of skip counting and the number line.

So, if we were to think about what 4 times 2 means, we've already seen in other videos you could view this as four groups of two. So we could have four groups.

One group, two groups, three groups, and four groups, and each of them have two of something. I'll just put two little circles here, so you have 2 there, you have 2 there, you have 2 there, and you have 2 there.

You could also view that as 4 twos, or 4 twos added together. So we could view it as two plus two plus two plus two. And this, of course, is going to be two plus two is four, four plus two is six, six plus two is eight. We see that over here.

We could even skip count: two, four, six, eight. Four times 2 is equal to 8.

We can also think about that on a number line. So I'm going to make a little bit of a number line here. We can imagine 4 times 2 being, all right, this is one times two, two times two, three times two, and four times two.

So we started at zero, and we took four hops of two along the number line to end up at eight. We went from zero to two, four, six, eight. We just counted our way to eight.

So if I were to ask a similar question, actually let me draw a little series of hops, and I want you to think about it the other way. What multiplication does that represent?

So let's say I start here, and then I'm going to hop like this. So I'm going to go there, and then I'm going to go there. I'm taking equal jumps every time.

Then I'm going to go there, then I'm going to go there, and then I'm going to go over there. So what would that represent if we use the same type of ideas that we just thought about?

Well, I went from 0 to 4, 8, 12, 16, 20. I'm skip counting by 4. So you can imagine this is probably something times four.

Now, how many hops did I take? I took one, two, three, four, five hops of four. So this is five times four.

And we can see that we ended up at twenty. We could also view this as being the same thing as five fours, or four plus four plus four plus four plus four.

And you see that over here, we're starting at zero. We're adding four, then another four, then another four, then another four, and another four. We have five fours here.

Let's do one more. So I'm gonna have a number line here and think about what it would mean to say, do something like 7 times 3.

Well, we could view that as seven hops of three, starting at zero, seven equal hops. So one, two, three, four, five, six, and seven. We end up at 21, so this is equal to 21.

You could also view this as we took seven threes and added them together. And you could also view the skip counting: you went from zero to three, six, nine, twelve, fifteen, eighteen, and twenty-one.

Now, just out of interest, what if we went the other way around? What if we were to take three hops of seven? What would that be?

Well, we would start here, and so we would take our first hop of seven right over there. We get to seven. Then if we take another hop of seven, we get to fourteen.

And then if we take another hop of seven, we get to twenty-one. Interesting! At least for this situation, whether we took 7 hops of 3 or 3 hops of 7, we got to the exact same value.

I encourage you to think about whether that's always going to be the case. I'll see you in a future video.

More Articles

View All
Automatic stabilizers | National income and price determination | AP Macroeconomics | Khan Academy
So what we have depicted in this diagram is the business cycle that we have looked at in other videos. This horizontal axis is time; the vertical axis is real GDP. What we see in this dark blue color, you can view that as full employment output at differe…
Regrouping to add 1-digit number | Addition and subtraction | 1st grade | Khan Academy
So, we have the number 35. The 3 is in the tens place, so it represents 30 or 3 tens—one 10, two groups of 10, three groups of 10. And then the 5 is in the ones place, so it represents five ones. We see them right over here—one, two, three, four, five. N…
Stoicism: Conquer Your Resolutions
Thank you. What is your New Year’s resolution? For some of us, it’s to be more productive; for others, it’s to lose weight or simply be healthier. For you, it might be to spend more time with friends and family, or finally write that book that you’ve been…
2015 AP Calculus AB 6c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Part C: Evaluate the second derivative of y with respect to x squared at the point on the curve where x equals negative one and y is equal to one. All right, so let’s just go to the beginning where they tell us that d y d x is equal to y over three y squ…
Kevin O'Leary: Harvard's Most Controversial Case Study?
At Harvard, why this is Kevin O’Leary building a brand in shark-infested waters? It’s a Harvard case about Mr. Wonderful. I can’t believe it; it’s surreal. Of course, I’m honored, no question about it. The whole story is in here, the whole Mr. Wonderful s…
Answering google's most searched questions of 2019..
So the Internet is a big place. There’s a lot of people on it, a lot of curious people. Things they want to do, stuff they want to learn, and that’s great and all. You know, it’s always good to learn things; you should never stop learning. Search engines …