yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplication on the number line


3m read
·Nov 11, 2024

What we're going to do in this video is think about different ways to represent multiplication, and especially connect it to the notions of skip counting and the number line.

So, if we were to think about what 4 times 2 means, we've already seen in other videos you could view this as four groups of two. So we could have four groups.

One group, two groups, three groups, and four groups, and each of them have two of something. I'll just put two little circles here, so you have 2 there, you have 2 there, you have 2 there, and you have 2 there.

You could also view that as 4 twos, or 4 twos added together. So we could view it as two plus two plus two plus two. And this, of course, is going to be two plus two is four, four plus two is six, six plus two is eight. We see that over here.

We could even skip count: two, four, six, eight. Four times 2 is equal to 8.

We can also think about that on a number line. So I'm going to make a little bit of a number line here. We can imagine 4 times 2 being, all right, this is one times two, two times two, three times two, and four times two.

So we started at zero, and we took four hops of two along the number line to end up at eight. We went from zero to two, four, six, eight. We just counted our way to eight.

So if I were to ask a similar question, actually let me draw a little series of hops, and I want you to think about it the other way. What multiplication does that represent?

So let's say I start here, and then I'm going to hop like this. So I'm going to go there, and then I'm going to go there. I'm taking equal jumps every time.

Then I'm going to go there, then I'm going to go there, and then I'm going to go over there. So what would that represent if we use the same type of ideas that we just thought about?

Well, I went from 0 to 4, 8, 12, 16, 20. I'm skip counting by 4. So you can imagine this is probably something times four.

Now, how many hops did I take? I took one, two, three, four, five hops of four. So this is five times four.

And we can see that we ended up at twenty. We could also view this as being the same thing as five fours, or four plus four plus four plus four plus four.

And you see that over here, we're starting at zero. We're adding four, then another four, then another four, then another four, and another four. We have five fours here.

Let's do one more. So I'm gonna have a number line here and think about what it would mean to say, do something like 7 times 3.

Well, we could view that as seven hops of three, starting at zero, seven equal hops. So one, two, three, four, five, six, and seven. We end up at 21, so this is equal to 21.

You could also view this as we took seven threes and added them together. And you could also view the skip counting: you went from zero to three, six, nine, twelve, fifteen, eighteen, and twenty-one.

Now, just out of interest, what if we went the other way around? What if we were to take three hops of seven? What would that be?

Well, we would start here, and so we would take our first hop of seven right over there. We get to seven. Then if we take another hop of seven, we get to fourteen.

And then if we take another hop of seven, we get to twenty-one. Interesting! At least for this situation, whether we took 7 hops of 3 or 3 hops of 7, we got to the exact same value.

I encourage you to think about whether that's always going to be the case. I'll see you in a future video.

More Articles

View All
Factoring quadratics with a common factor | Algebra 1 | Khan Academy
Avril was trying to factor 6x squared minus 18x plus 12. She found that the greatest common factor of these terms was 6 and made an area model. What is the width of Avril’s area model? So pause this video and see if you can figure that out, and then we’ll…
These Ants Use Their Babies As Glue Guns
Deep in tropical jungles lie floating kingdoms, ruled by beautiful and deadly masters. They’re sort of the high elves of the ant kingdoms; talented architects that create castles and city-states. But they are also fierce and expansionist warriors, and the…
HE'S FOLLOWING YOU! -- DONG!
Hey, Vsauce. Michael here, and if you need more DONG, don’t worry, because I’m bringing you more things you could do online now, guys. “JaydenMarkAnderson” recommended Clubcreate, where you can make your own remixes right inside your browser. As we liste…
Safari Live - Day 296 | National Geographic
[Music] This program features live coverage of an African safari and may include animal kills and carcasses. Viewers, good afternoon! Everybody, I’m whisper shouting at you in excitement because for the very first time on Safari Live, there are the new a…
This Season On Valley of the Boom | National Geographic
Let’s try one with a little bigger smile. [rushing sound] [dial tone] [gagging] [dramatic sounds] [gun clicks] [horn honking] Oh my god. Shh. You see all that? It didn’t happen. [electronic music playing] Microsoft didn’t literally kill anyone. They were…
Interval of convergence for derivative and integral | Series | AP Calculus BC | Khan Academy
Times in our dealings with power series, we might want to take the derivative or we might want to integrate them. In general, we can do this term by term. What do I mean by that? Well, that means that the derivative of f prime of x is just going to be the…