yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Interpreting direction of motion from position-time graph | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

An object is moving along a line. The following graph gives the object's position relative to its starting point over time. For each point on the graph, is the object moving forward, backward, or neither? So pause this video and try to figure that out.

All right, so we see we have position in meters versus time. So for example, this point right over here tells us that after one second, we are four meters ahead of our starting point. Or for example, this point right over here says that after four seconds, we are almost— it seems almost— four meters behind our starting point.

So let's look at each of these points and think about whether we're moving forward, backward, or neither. So at this point right over here, at that moment, we're about two and a half meters in front of our starting point. We're at a positive position of two and a half meters.

But as time goes on, we are moving backwards, closer and closer to the starting point. So this is— we are moving backward. One way to think about it, at this time, we're two and a half meters. If you go forward about half a second, we are then back at our starting point, so we have to go backwards.

And if we look at this point right over here, it looks like we were going backwards this entire time, while our curve is downward sloping. But at this point right over here, when we are about— it looks like five meters behind our starting point— we start going forward again.

But right at that moment, we are going neither forward nor backwards. It's right at that moment where we just finished going backwards, and we're about to go forward. And one way to think about it is, what would be the slope of the tangent line at that point? The slope of the tangent line at that point would be horizontal; and so this is neither.

So we can use that same technique to think about this point. The slope is positive, and we see that. All right, right at that moment, it looks like we are at the starting point. But if you fast forward even a few— even a fraction of a second— we are now in front of our starting point. So we are moving forward.

We are moving forward right over here, and at this point we are at our starting point. But if we think about what's going to happen a moment later, a moment later, we're going to be a little bit behind our starting point. And so here we are moving backwards.

And we're done.

More Articles

View All
Example scaling parabola
Function G can be thought of as a scaled version of f of x equal to x^2. Write the equation for G of x. So like always, pause this video and see if you can do it on your own. All right, now let’s work through this together. So the first thing that we mig…
My Story With Watch Insurance & WonderCare l Exclusive Interview With “Watch Time”
No, I’ve had um two entire collections stolen. Uh, one was an inside job and another was a random break-in to a home I had in Boston generated 1,000 requests for policies. Nobody in the insurance industry has ever, ever seen that before. I don’t sell watc…
The Stock Market JUST Flipped
What’s up, Graham? It’s Guys here. So we did it! We broke the stock market. I’ve tried turning it off and on. I’ve been on hold with customer service, but it won’t stop going down. All right, just kidding! But for anyone who’s investing in the stock marke…
This Is A Light-Nanosecond!
I trimmed my beard yesterday, so I’m feeling a bit like a baby today. But look at the trimmings! Specifically this one that is 2.4 fortnits worth of beard growth. How do I know? Well, because of this tool I made. This about 5 years ago to free people from…
Magnetic forces | Forces at a distance | Middle school physics | Khan Academy
Let’s talk about magnets and magnetic forces. Magnets are these neat objects that are able to attract metals like iron. Magnets are used in all sorts of things, from holding paper on your refrigerator to computers to compasses. So, magnets can be used to …
Introduction to Gibbs free energy | Applications of thermodynamics | AP Chemistry | Khan Academy
Gibbs free energy is symbolized by G, and change in Gibbs free energy is symbolized by delta G. The change in free energy, delta G, is equal to the change in enthalpy, delta H, minus the temperature in Kelvin times the change in entropy, delta S. When de…