yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How to get better at video games, according to babies - Brian Christian


3m read
·Nov 8, 2024

In 2013, a group of researchers at DeepMind in London had set their sights on a grand challenge. They wanted to create an AI system that could beat, not just a single Atari game, but every Atari game. They developed a system they called Deep Q Networks, or DQN, and less than two years later, it was superhuman. DQN was getting scores 13 times better than professional human games testers at “Breakout,” 17 times better at “Boxing,” and 25 times better at “Video Pinball.”

But there was one notable, and glaring, exception. When playing “Montezuma’s Revenge,” DQN couldn’t score a single point, even after playing for weeks. What was it that made this particular game so vexingly difficult for AI? And what would it take to solve it? Spoiler alert: babies. We’ll come back to that in a minute.

Playing Atari games with AI involves what’s called reinforcement learning, where the system is designed to maximize some kind of numerical rewards. In this case, those rewards were simply the game's points. This underlying goal drives the system to learn which buttons to press and when to press them to get the most points. Some systems use model-based approaches, where they have a model of the environment that they can use to predict what will happen next once they take a certain action. DQN, however, is model free. Instead of explicitly modeling its environment, it just learns to predict, based on the images on screen, how many future points it can expect to earn by pressing different buttons.

For instance, “if the ball is here and I move left, more points, but if I move right, no more points.” But learning these connections requires a lot of trial and error. The DQN system would start by mashing buttons randomly, and then slowly piece together which buttons to mash when in order to maximize its score. But in playing “Montezuma’s Revenge,” this approach of random button-mashing fell flat on its face. A player would have to perform this entire sequence just to score their first points at the very end. A mistake? Game over. So how could DQN even know it was on the right track?

This is where babies come in. In studies, infants consistently look longer at pictures they haven’t seen before than ones they have. There just seems to be something intrinsically rewarding about novelty. This behavior has been essential in understanding the infant mind. It also turned out to be the secret to beating “Montezuma’s Revenge.” The DeepMind researchers worked out an ingenious way to plug this preference for novelty into reinforcement learning.

They made it so that unusual or new images appearing on the screen were every bit as rewarding as real in-game points. Suddenly, DQN was behaving totally differently from before. It wanted to explore the room it was in, to grab the key and escape through the locked door— not because it was worth 100 points, but for the same reason we would: to see what was on the other side.

With this new drive, DQN not only managed to grab that first key— it explored all the way through 15 of the temple’s 24 chambers. But emphasizing novelty-based rewards can sometimes create more problems than it solves. A novelty-seeking system that’s played a game too long will eventually lose motivation. If it’s seen it all before, why go anywhere?

Alternately, if it encounters, say, a television, it will freeze. The constant novel images are essentially paralyzing. The ideas and inspiration here go in both directions. AI researchers stuck on a practical problem, like how to get DQN to beat a difficult game, are turning increasingly to experts in human intelligence for ideas.

At the same time, AI is giving us new insights into the ways we get stuck and unstuck: into boredom, depression, and addiction, along with curiosity, creativity, and play.

More Articles

View All
Multiplying 1-digit numbers by multiples of 10, 100, and 1000 | Math | 4th grade | Khan Academy
Let’s multiply 4 times 80. So we can look at this a few ways. One way is to say 4 times we have the number 80. So we have the number 80 one time, two times, three times, four times. Four times we have the number eighty, and we could do this computation, …
The Black Hole That Kills Galaxies - Quasars
The universe looks like a vast empty ocean sprinkled with the rare islands of galaxies. But this is an illusion. Just a small fraction of all atoms are found in galaxies, while the rest is thought to be drifting in between, in the intergalactic medium. Li…
HOW TO GET 1000 SUBSCRIBERS ON YOUTUBE IN 2022
What’s up you guys? It’s great I’m here! So really quick, before I get into the video, is really fun YouTube experiment. Hit the like button and comment anything down below for the almighty YouTube algorithm. The reason for this is because from all the r…
15 Signs Someone is Fake Smart
Nothing inflates your ego more than the illusion that you’re the smartest in the room. But in many cases, people pretend to be smart to feel special and mask their insecurities. These are 15 signs someone is faking being smart. Welcome to alux.com, the p…
Earthships: A House Made From Beer Cans Sparks a Movement | Short Film Showcase
People look at this and call it a Mad Max compound. What the heck? These people live like this and a bunch of dirty hippies that don’t know how to clean up the land. Wow, it’s weird. They call it trashy. The world is not going to build weird houses, but y…
Which Sales Strategy Is Best For Your Startup?
Hi, my name is Pete. I’m a visiting group partner at Y Combinator and formerly co-founder and CTO at Optimizely. Today we’re going to talk about two different ways to sell your products to large organizations: Bottoms Up and Top Down. This is versus selli…