yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Volume of rectangular pyramids using rectangular prisms | Grade 7 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

Now let's look at a rectangular prism. This is not a cube because we can see that all the sides have different lengths. We have the length, the width, and the height, and those are all different. To find the volume of this, I would still multiply the length by the width by the height, but those would all be different lengths.

Just like we did with our cube, we can also break a rectangular prism into three rectangular pyramids. We know that for a cube, the three pyramids are congruent, but when I take these apart, these definitely don't look congruent to me. If I compare each of them to my rectangular prism, I can see that they are all different.

For example, for my pink pyramid, these bases are the same, and the height corresponds to the other length. Now let's take a look at this yellow one. So now, this base, the rectangular base, corresponds to this side, and the height here corresponds to that side. Now for my green one, this base corresponds to this face, while the height corresponds to this height.

So we can see here that all three of the pyramids do look different, but let's compare their volumes. So how do you think we might figure out if the volumes of these pyramids are the same or how they might compare with each other? Well, a simple method is to fill them up with something and actually compare which holds more. So today we're going to do that, and we're going to use lentils.

The pink one looks like it might be the smallest to me, so I'm going to start with that one and compare the volumes. So here is my pink pyramid, and I'm going to open up the base and pour in some lentils. Let's see, let's get it nice and flat. This pyramid now is filled with our lentils, and now let's pour it into the yellow pyramid.

So let's see, when I pour all of the lentils into the yellow pyramid, and I'm going to smooth them all out, the lentils fit perfectly. So this tells us that the volume of the pink pyramid and the yellow pyramid are the same. And now let's check the green pyramid. What do you think? Do you think the volume will be the same?

All right, let's see. Looks like I've lost a few lentils—that's okay. So now when I smooth them out, it fits, and so this tells me that the volume of all three pyramids are the same. So we've just seen that the shapes of these pyramids are different, their bases are different dimensions, and their heights are different, but the volumes are the same.

And that's really interesting. So the reason why this is important is because we want to go back to our original rectangular prism. Even though the pyramids are different shapes, they all have the same volume since they form a rectangular prism. Altogether, their volumes are each one-third of the total volume of the prism.

To formalize what we just discovered, the volume of a rectangular pyramid, one of these guys, is one-third the volume of a rectangular prism with the same base area and height. I hope seeing some visuals makes the formulas make more sense. Thanks for watching, and happy mathing!

More Articles

View All
Protecting the Sun Bears of Borneo | National Geographic
People in many cultures still heat Sanders as sneak, and then thunder is believed to have certain body parts that are believed to have medicine and values. For example, gallbladder Sanders play very important roles in the forest ecosystems. They play a ro…
How I Developed the Principled Way of Thinking
What happened is I found that I needed to write down my criteria and test them. So I started with the markets because, you know, it’s tough to wrestle all in your head with everything. I found that I needed to do that, and I could test the criteria. I fo…
Worked example: over- and under-estimation of Riemann sums | AP Calculus AB | Khan Academy
The continuous function ( g ) is graphed. We’re interested in the area under the curve between ( x ) equals negative seven and ( x ) equals seven, and we’re considering using Riemann sums to approximate it. So, this is the area that we’re thinking about i…
The Berkshire Hathaway Shareholder Meeting (From Then To Now)
Warren Buffett, the CEO of Berkshire Hathaway, is without doubt the king of investing. There’s never been anyone with a track record close to his, and it’s unlikely there will be for a very, very long time. Buffett took over Berkshire Hathaway back in 196…
The Second Inflation Wave is Coming... (Michael Burry's Big Bet for 2024)
Well, you might have seen recently that Michael Barry is back in the news, and that is because he has just released his latest 13F filing, giving us a peek behind the curtain as to what he’s doing with his own stock portfolio. While Michael Barry definite…
A Day in the Life of 'The Dogist,' Pet Photographer Extraordinaire | Short Film Showcase
Oh, there’s nothing really crazy bad. I walk around and they may take a foot of your dog. I take a photo of your dog. I take a photo of your dog, say, “Okay, okay, good luck trying to get his photo.” Sit! Squeak toy comes out. I start making a weird nois…