yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification using second derivative: inflection point | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The twice differentiable function g and its second derivative g prime prime are graphed, and you can see it right over here. I'm actually working off of the article on Khan Academy called Justifying Using Second Derivatives.

So we see our function g, and we see not its first derivative, but its second derivative here in this brown color. Then the article goes on to say, or the problem goes on to say, four students were asked to give an appropriate calculus-based justification for the fact that g has an inflection point at x equals negative two.

So let's just feel good that it at least intuitively feels right. So x equals negative two, remember what an inflection point is; it's where we're going from concave downwards to concave upwards, or concave upwards to concave downwards.

Another way to think about it is it's a situation where our slope goes from decreasing to increasing, or from increasing to decreasing. When we look at it over here, it looks like our slope is decreasing; it's positive, but it's decreasing. It goes to zero, then it keeps decreasing; it becomes negative now, keeps decreasing until we get to about x equals negative two, and then it seems that it's increasing.

It's getting less and less and less negative. It looks like it's a zero right over here. Then it just keeps increasing, gets more and more and more positive. So it does indeed look like at x equals negative two, we go from being concave downwards to concave upwards.

Now a calculus-based justification is we could look at the second derivative and see where the second derivative crosses the x-axis because where the second derivative is negative, that means our slope is decreasing; we are concave downwards.

Where the second derivative is positive, it means our first derivative is increasing; our slope of our original function is increasing, and we are concave upwards. So notice we do indeed—the second derivative does indeed cross the x-axis at x equals negative two.

It's not enough for it to just be zero or touch the x-axis; it needs to cross the x-axis in order for us to have an inflection point there. Given that, let's look at the students' justifications and see what we could—if we kind of put the teacher hat in our mind and say what a teacher would say for the different justifications.

So the first student says, "The second derivative of g changes signs at x equals negative 2." Well, that's exactly what we were just talking about. If the second derivative changes signs—goes, in this case, from negative to positive—that means our first derivative went from decreasing to increasing, which is indeed good for saying this is a calculus-based justification.

So at least for now, I'm going to put kudos; you are correct there. It crosses the x-axis. So this is ambiguous: what is crossing the x-axis? If a student wrote this, I'd say, “Well, are they talking about the function? Are they talking about the first derivative, the second derivative?”

And so I would say, “Please use more precise language. This cannot be accepted as a correct justification.” All right, let's read the other ones. The second derivative of g is increasing at x equals negative two. Well, no, that doesn't justify why you have an inflection point there.

For example, the second derivative is increasing at x equals negative 2.5. The second derivative is even increasing at x equals negative one, but you don't have inflection points at those places. So I would say this doesn't justify why g has an inflection point.

Then the last student responds, "The graph of g changes concavity at x equals negative 2." That is true, but that isn't a calculus-based justification. We'd want to use our second derivative here.

More Articles

View All
Some Say This Goliath Fish, Once Overfished, Is Now a Nuisance | National Geographic
They are fish that can range from a tasty 30-pounder to something the size of a Volkswagen. You’ll see spots where this, you know, multiples like 14, 15, 20 Goliath Grouper swimming around. The Goliath Grouper population is getting out of hand. They were …
Safari Live - Day 65 | Nat Geo WILD
Welcome back everyone! Sorry about the gremlins that have beset us here in the Morrow for the last little while, but it seems like we’re back and we’re still with this incredible scene playing out in this lagoon. We’ve got some more hyenas that arrived. …
How can I keep all my smart devices secure?
So Mark, so far we’ve talked a lot about device security, and when we talk about devices, at least in my mind, I imagine my phone, I imagine my laptop, a tablet, maybe a smart watch. But there’s actually a much broader universe of devices—smart devices, y…
The Fermi Paradox — Where Are All The Aliens? (1/2)
Are we the only living things in the entire universe? The observable universe is about 90 billion light years in diameter. There are at least 100 billion galaxies, each with 100 to 1,000 billion stars. Recently, we’ve learned that planets are very common …
Time on a number line example
We’re told to look at the following number line, and this number line we actually have times on it, so you could even call it a timeline. We’re starting at one o’clock here. Then we go to 1:15, 1:30, 1:45, then 2 o’clock. It says, “What time is shown on t…
Here’s EXACTLY how much I made from YouTube in 2018 (Not Clickbait)
What’s up, you guys? It’s Graham here. So I’ll just get right into it. A month ago, I posted a video showing how much I made from a 1.4 million view viral video, which if you haven’t seen that video yet, make sure to go and check that out so you can go an…