yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification using second derivative: inflection point | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The twice differentiable function g and its second derivative g prime prime are graphed, and you can see it right over here. I'm actually working off of the article on Khan Academy called Justifying Using Second Derivatives.

So we see our function g, and we see not its first derivative, but its second derivative here in this brown color. Then the article goes on to say, or the problem goes on to say, four students were asked to give an appropriate calculus-based justification for the fact that g has an inflection point at x equals negative two.

So let's just feel good that it at least intuitively feels right. So x equals negative two, remember what an inflection point is; it's where we're going from concave downwards to concave upwards, or concave upwards to concave downwards.

Another way to think about it is it's a situation where our slope goes from decreasing to increasing, or from increasing to decreasing. When we look at it over here, it looks like our slope is decreasing; it's positive, but it's decreasing. It goes to zero, then it keeps decreasing; it becomes negative now, keeps decreasing until we get to about x equals negative two, and then it seems that it's increasing.

It's getting less and less and less negative. It looks like it's a zero right over here. Then it just keeps increasing, gets more and more and more positive. So it does indeed look like at x equals negative two, we go from being concave downwards to concave upwards.

Now a calculus-based justification is we could look at the second derivative and see where the second derivative crosses the x-axis because where the second derivative is negative, that means our slope is decreasing; we are concave downwards.

Where the second derivative is positive, it means our first derivative is increasing; our slope of our original function is increasing, and we are concave upwards. So notice we do indeed—the second derivative does indeed cross the x-axis at x equals negative two.

It's not enough for it to just be zero or touch the x-axis; it needs to cross the x-axis in order for us to have an inflection point there. Given that, let's look at the students' justifications and see what we could—if we kind of put the teacher hat in our mind and say what a teacher would say for the different justifications.

So the first student says, "The second derivative of g changes signs at x equals negative 2." Well, that's exactly what we were just talking about. If the second derivative changes signs—goes, in this case, from negative to positive—that means our first derivative went from decreasing to increasing, which is indeed good for saying this is a calculus-based justification.

So at least for now, I'm going to put kudos; you are correct there. It crosses the x-axis. So this is ambiguous: what is crossing the x-axis? If a student wrote this, I'd say, “Well, are they talking about the function? Are they talking about the first derivative, the second derivative?”

And so I would say, “Please use more precise language. This cannot be accepted as a correct justification.” All right, let's read the other ones. The second derivative of g is increasing at x equals negative two. Well, no, that doesn't justify why you have an inflection point there.

For example, the second derivative is increasing at x equals negative 2.5. The second derivative is even increasing at x equals negative one, but you don't have inflection points at those places. So I would say this doesn't justify why g has an inflection point.

Then the last student responds, "The graph of g changes concavity at x equals negative 2." That is true, but that isn't a calculus-based justification. We'd want to use our second derivative here.

More Articles

View All
Why Trees Are Out to Get You
This video is part of what is potentially the largest collaboration ever on YouTube, along with my friends Mr. Beast and Mark Rober, Destin from Smarter Every Day, and many, many others. We’re trying to get 20 million trees planted before the end of this …
The 5 BEST Credit Cards For Beginners in 2020
What’s up guys, it’s Graham here! So, a little over a year ago, I made a video going over the best beginner credit cards to get in 2019. But now, I realized there’s a bit of a problem, and that is that it’s not 2019 anymore. It’s the future—it’s now 2020.…
Could this be the oldest known human burial? #archaeology
So this is the Superman crawl. It’s an opening less than 10 inches wide where you literally have to make a Superman pose just to make it through. If you follow the cape through the Dragon’s Back chamber and then go down to shoot, yeah, that’s you. Superm…
... and why!
The reason this trick works every single time is elegantly simple. It has everything to do with the fact that their chosen card will always be in a pack that is third from the top. That’s because we had them take the pack containing their card, see? Ther…
Q&A with Experts About the Upcoming Total Solar Eclipse | National Geographic
Good evening, y’all. I’m Dr. Jada Eisler, a National Geographic Explorer and an observational astrophysicist. We’re here in Terrebonne, Oregon. Over my shoulder is Monkeyface, where earlier today climbers were getting high so they could see the views of t…
7 STOIC PRINCIPLES FOR INNER PEACE | STOICISM
Fellow Stoics, do you feel you can find inner calm even with all the noise today? Imagine handling life’s ups and downs as calmly as a tranquil lake, no matter how turbulent it becomes. Sounds too wonderful to be true? Not exactly! In this video, we will…