yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Justification using second derivative: inflection point | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

The twice differentiable function g and its second derivative g prime prime are graphed, and you can see it right over here. I'm actually working off of the article on Khan Academy called Justifying Using Second Derivatives.

So we see our function g, and we see not its first derivative, but its second derivative here in this brown color. Then the article goes on to say, or the problem goes on to say, four students were asked to give an appropriate calculus-based justification for the fact that g has an inflection point at x equals negative two.

So let's just feel good that it at least intuitively feels right. So x equals negative two, remember what an inflection point is; it's where we're going from concave downwards to concave upwards, or concave upwards to concave downwards.

Another way to think about it is it's a situation where our slope goes from decreasing to increasing, or from increasing to decreasing. When we look at it over here, it looks like our slope is decreasing; it's positive, but it's decreasing. It goes to zero, then it keeps decreasing; it becomes negative now, keeps decreasing until we get to about x equals negative two, and then it seems that it's increasing.

It's getting less and less and less negative. It looks like it's a zero right over here. Then it just keeps increasing, gets more and more and more positive. So it does indeed look like at x equals negative two, we go from being concave downwards to concave upwards.

Now a calculus-based justification is we could look at the second derivative and see where the second derivative crosses the x-axis because where the second derivative is negative, that means our slope is decreasing; we are concave downwards.

Where the second derivative is positive, it means our first derivative is increasing; our slope of our original function is increasing, and we are concave upwards. So notice we do indeed—the second derivative does indeed cross the x-axis at x equals negative two.

It's not enough for it to just be zero or touch the x-axis; it needs to cross the x-axis in order for us to have an inflection point there. Given that, let's look at the students' justifications and see what we could—if we kind of put the teacher hat in our mind and say what a teacher would say for the different justifications.

So the first student says, "The second derivative of g changes signs at x equals negative 2." Well, that's exactly what we were just talking about. If the second derivative changes signs—goes, in this case, from negative to positive—that means our first derivative went from decreasing to increasing, which is indeed good for saying this is a calculus-based justification.

So at least for now, I'm going to put kudos; you are correct there. It crosses the x-axis. So this is ambiguous: what is crossing the x-axis? If a student wrote this, I'd say, “Well, are they talking about the function? Are they talking about the first derivative, the second derivative?”

And so I would say, “Please use more precise language. This cannot be accepted as a correct justification.” All right, let's read the other ones. The second derivative of g is increasing at x equals negative two. Well, no, that doesn't justify why you have an inflection point there.

For example, the second derivative is increasing at x equals negative 2.5. The second derivative is even increasing at x equals negative one, but you don't have inflection points at those places. So I would say this doesn't justify why g has an inflection point.

Then the last student responds, "The graph of g changes concavity at x equals negative 2." That is true, but that isn't a calculus-based justification. We'd want to use our second derivative here.

More Articles

View All
Use the Force! | Explorer
Innovator Ton Lee is changing the way we study the brain. So that will feel a little wet on your head because this is the nature of this system. Lee’s revolutionary headset records our brain waves and translates them into meaningful data that’s easy to u…
Drowning in Grain: A Look at the Hidden Dangers of Farming | Short Film Showcase
So we’ve got a situation here with a farmer or child who’s trapped in a grain bin. We’ve got plastic coffers here, and we’ll be placing these on each side of the victim. These are actually going to protect the victim from the corn, to get the corn from co…
How Do You Become Santa Claus? Santa School, Of Course! | National Geographic
Now the reason why it’s important that you learn to do this, it’s because you’re the most photographed people in the world. The Charles W. Howard Santa Claus School is the world’s oldest Santa Claus school. It is here to help Santa’s become [Music]. The S…
London is the centre of the world
The world changed a lot. It’s like a moving chessboard. London was the gateway not only to Europe, but really to the financial world outside of New York. New York now, from what I can see, has sort of gone away from being that financial hub. But at the en…
Why The Stock Market Will Keep Falling
What’s up, guys? It’s Graham here. So, it seems as though every few months there’s a new major shift in the market that continues to pull prices from one side to another. This week, we might just have the next major catalyst that would completely change t…
My Asian Non Sponsored Skincare Routine
Hi guys, it’s me Jody! Today I’m back with another video. Today I’m going to be showing you guys my morning and nighttime skincare routine. But before starting the video, I want to clear out something, and that is, I think skincare is something supplement…