yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using recursive formulas of geometric sequences | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

The geometric sequence ( a_i ) is defined by the formula where the first term ( a_1 ) is equal to -1/8 and then every term after that is defined as being so ( a_i ) is going to be two times the term before that. So, ( a_i ) is ( 2 \times a_{i-1} ).

What is ( a_4 ), the fourth term in the sequence? Pause the video and see if you can work this out.

Well, there's a couple of ways that you could tackle this. One is to just directly use these formulas. So, we could say that ( a_4 ), well, that's going to be this case right over here: ( a_4 ) is going to be equal to ( 2 \times a_3 ).

Well, ( a_3 ) if we go and use this formula is going to be equal to ( 2 \times a_2 ). Each term is equal to two times the term before it, and then we can go back to this formula again and say ( a_2 ) is going to be ( 2 \times a_1 ): ( 2 \times a_1 ).

And lucky for us, we know that ( a_1 ) is -1/8, so it's going to be ( 2 \times -1/8 ), which is equal to -1/4.

So, this is -1/4. Thus, ( 2 \times -1/4 ) is equal to -1/2 or -1/2.

So, ( a_4 ) is ( 2 \times a_3 ). ( a_3 ) is -1/2, so this is going to be ( 2 \times -1/2 ), which is going to be equal to -1.

So that's one way to solve it. Another way to think about it is: look, we have our initial term and we also know our common ratio. We know each successive term is two times the term before it.

So, we could explicitly write it as ( a_i ) is going to be equal to our initial term -1/8, and then we're going to multiply it by two. We're going to multiply it by ( 2^{i-1} ) times.

So, we could say, times ( 2^{i-1} ). Let's make sure that makes sense. So ( a_1 ) based on this formula ( a_1 ) would be -1/8 times ( 2^{1-1} ) which is ( 2^0 ). So that makes sense; that would be -1/8 based on this formula.

( a_2 ) would be -1/8 times ( 2^{2-1} ) so ( 2^1 ). So we're going to take our initial term and multiply it by 2 once, which is exactly right.

( a_2 ) is -1/4. So if we want to find the fourth term in the sequence, we could just say, well, using this explicit formula, we could say ( a_4 ) is equal to -1/8 times ( 2^{4-1} ), which is -1/8 times ( 2^3 ).

So this is equal to -1/8 times 8.

Thus, -1/8 times 8 equals -1.

And you might be a little bit tossed up on which method you want to use, but for sure this second method right over here where we come up with an explicit formula once we know the initial term and we know the common ratio—this would be way easier if you were trying to find, say, the 40th term.

Because doing the 40th term recursively like this would take a lot of time and frankly a lot of paper.

More Articles

View All
2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}). All right, write an equation for the line tangent to the curve at the point ((-1, 1)). So, we could…
Designing the Costumes | Saints & Strangers
[Music] It’s always fun sitting on sets, watching everybody in costumes. CU of course, it’s the nearest thing to time travel you can kind of get, you know? Everyone disappears if the crews are in a certain way. You just look around, you see these people, …
Creativity break: how do you get into your creative zone? | Khan Academy
[Music] I allow my brain to do the work to get into my creative zone when I have a problem to resolve. Sometimes I just sleep on it, and I let my subconscious mind work through resolving problems and solving problems. Our brains are always at work, like …
How Many 5 Year-Olds Could You Fight? -- And 18 Other DONGs!
Hey, Vsauce. Michael here. And I am now living in London. Besides popping on over to Disneyland Paris, I’ve also been looking at DONGs: Things you can Do Online Now, Guys. For instance, because I’m now in Britain, my team has changed for clickclickclick.…
2015 AP Biology free response 3
The amino acid sequence of cytochrome c was determined for five different species of vertebrates. The table below shows the number of differences in the sequences between each pair of species. So just to give us some context for what we’re talking about,…
Fluid flow and vector fields | Multivariable calculus | Khan Academy
So in the last video, I talked about vector fields, and here I want to talk about a special circumstance where they come up. So imagine that we’re sitting in the coordinate plane, and that I draw for you a whole bunch of little droplets, droplets of water…