yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using recursive formulas of geometric sequences | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

The geometric sequence ( a_i ) is defined by the formula where the first term ( a_1 ) is equal to -1/8 and then every term after that is defined as being so ( a_i ) is going to be two times the term before that. So, ( a_i ) is ( 2 \times a_{i-1} ).

What is ( a_4 ), the fourth term in the sequence? Pause the video and see if you can work this out.

Well, there's a couple of ways that you could tackle this. One is to just directly use these formulas. So, we could say that ( a_4 ), well, that's going to be this case right over here: ( a_4 ) is going to be equal to ( 2 \times a_3 ).

Well, ( a_3 ) if we go and use this formula is going to be equal to ( 2 \times a_2 ). Each term is equal to two times the term before it, and then we can go back to this formula again and say ( a_2 ) is going to be ( 2 \times a_1 ): ( 2 \times a_1 ).

And lucky for us, we know that ( a_1 ) is -1/8, so it's going to be ( 2 \times -1/8 ), which is equal to -1/4.

So, this is -1/4. Thus, ( 2 \times -1/4 ) is equal to -1/2 or -1/2.

So, ( a_4 ) is ( 2 \times a_3 ). ( a_3 ) is -1/2, so this is going to be ( 2 \times -1/2 ), which is going to be equal to -1.

So that's one way to solve it. Another way to think about it is: look, we have our initial term and we also know our common ratio. We know each successive term is two times the term before it.

So, we could explicitly write it as ( a_i ) is going to be equal to our initial term -1/8, and then we're going to multiply it by two. We're going to multiply it by ( 2^{i-1} ) times.

So, we could say, times ( 2^{i-1} ). Let's make sure that makes sense. So ( a_1 ) based on this formula ( a_1 ) would be -1/8 times ( 2^{1-1} ) which is ( 2^0 ). So that makes sense; that would be -1/8 based on this formula.

( a_2 ) would be -1/8 times ( 2^{2-1} ) so ( 2^1 ). So we're going to take our initial term and multiply it by 2 once, which is exactly right.

( a_2 ) is -1/4. So if we want to find the fourth term in the sequence, we could just say, well, using this explicit formula, we could say ( a_4 ) is equal to -1/8 times ( 2^{4-1} ), which is -1/8 times ( 2^3 ).

So this is equal to -1/8 times 8.

Thus, -1/8 times 8 equals -1.

And you might be a little bit tossed up on which method you want to use, but for sure this second method right over here where we come up with an explicit formula once we know the initial term and we know the common ratio—this would be way easier if you were trying to find, say, the 40th term.

Because doing the 40th term recursively like this would take a lot of time and frankly a lot of paper.

More Articles

View All
Harvesting Wild Honey in the Amazon | Primal Survivor: Escape the Amazon | National Geographic
[Music] Up there is pure energy in its raw sporum. That’s exactly what I need: wild honey, a nutritious calorie-packed hit of energy. It’s pretty special stuff, but getting it is never easy. Oh, I’m getting stung all over! I just keep getting nailed by b…
Symmetry of second partial derivatives
So in the last couple videos I talked about partial derivatives of multivariable functions, and here I want to talk about second partial derivatives. So, I’m going to write some kind of multivariable function. Let’s say it’s, um, I don’t know, sin of x * …
Ideal circuit elements | Circuit analysis | Electrical engineering | Khan Academy
We’re now ready to start the study of circuit analysis and to design circuits and analyze circuits. One of the things we need to do is have something to build circuits with, and that’s what we’re going to talk about in this video. The idea is we’re going …
What kind of levers does the Speaker have? | US Government and Civics | Khan Academy
What kind of levers does the Speaker have in relation to the other House representatives? The Speaker has all kinds of levers, both formal and informal. In fact, a lot of them are informal. The Speaker can name a lot of people to the committees, particul…
Stem cells and differentiation | From cells to organisms | High school biology | Khan Academy
To me, one of the most fascinating ideas in biology is that we all started as a fertilized egg. So, that is a cell right over there. And then, through many, many divisions, all of a sudden—I wouldn’t say all of a sudden; it takes many months to develop ev…
2015 AP Calculus BC 2c | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
Part C: Find the time at which the speed of the particle is three. So let’s just remind ourselves what speed is. It’s the magnitude of velocity. If you have the x, actually let me draw it this way. If you have the x dimension of, or the x component of a …