yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using recursive formulas of geometric sequences | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

The geometric sequence ( a_i ) is defined by the formula where the first term ( a_1 ) is equal to -1/8 and then every term after that is defined as being so ( a_i ) is going to be two times the term before that. So, ( a_i ) is ( 2 \times a_{i-1} ).

What is ( a_4 ), the fourth term in the sequence? Pause the video and see if you can work this out.

Well, there's a couple of ways that you could tackle this. One is to just directly use these formulas. So, we could say that ( a_4 ), well, that's going to be this case right over here: ( a_4 ) is going to be equal to ( 2 \times a_3 ).

Well, ( a_3 ) if we go and use this formula is going to be equal to ( 2 \times a_2 ). Each term is equal to two times the term before it, and then we can go back to this formula again and say ( a_2 ) is going to be ( 2 \times a_1 ): ( 2 \times a_1 ).

And lucky for us, we know that ( a_1 ) is -1/8, so it's going to be ( 2 \times -1/8 ), which is equal to -1/4.

So, this is -1/4. Thus, ( 2 \times -1/4 ) is equal to -1/2 or -1/2.

So, ( a_4 ) is ( 2 \times a_3 ). ( a_3 ) is -1/2, so this is going to be ( 2 \times -1/2 ), which is going to be equal to -1.

So that's one way to solve it. Another way to think about it is: look, we have our initial term and we also know our common ratio. We know each successive term is two times the term before it.

So, we could explicitly write it as ( a_i ) is going to be equal to our initial term -1/8, and then we're going to multiply it by two. We're going to multiply it by ( 2^{i-1} ) times.

So, we could say, times ( 2^{i-1} ). Let's make sure that makes sense. So ( a_1 ) based on this formula ( a_1 ) would be -1/8 times ( 2^{1-1} ) which is ( 2^0 ). So that makes sense; that would be -1/8 based on this formula.

( a_2 ) would be -1/8 times ( 2^{2-1} ) so ( 2^1 ). So we're going to take our initial term and multiply it by 2 once, which is exactly right.

( a_2 ) is -1/4. So if we want to find the fourth term in the sequence, we could just say, well, using this explicit formula, we could say ( a_4 ) is equal to -1/8 times ( 2^{4-1} ), which is -1/8 times ( 2^3 ).

So this is equal to -1/8 times 8.

Thus, -1/8 times 8 equals -1.

And you might be a little bit tossed up on which method you want to use, but for sure this second method right over here where we come up with an explicit formula once we know the initial term and we know the common ratio—this would be way easier if you were trying to find, say, the 40th term.

Because doing the 40th term recursively like this would take a lot of time and frankly a lot of paper.

More Articles

View All
"YOU WON'T BELIEVE YOUR EYES!" - Smarter Every Day 142
Hey, it’s me Destin. Welcome back to Smarter Every Day. You won’t believe your eyes. You’ve heard this before, right? It’s usually like a clickbait title to get you to watch an internet video or read a stupid article. But are there cases when you actually…
Relating unit rate to slope in graphs of proportional relationships | Grade 8 (TX) | Khan Academy
A farmer sold 26 kg of tomatoes for $78. Which graph has a slope that represents the cost of tomatoes in dollars per kilogram? Pause this video, work through this on your own before we do this together. So, if we’re thinking about slope, slope is all ab…
Touring a unique terraced backyard farm | Farm Dreams
Let’s head up the hill and you can see kind of the other areas of the farm. Okay, oh, carrots! Yep, these carrots are pretty close to ready. Yeah, yeah, wow! Everything looks so incredible from up here too. It’s like this is where I feel like I would hang…
Teaching Math with Khanmigo
Meet Conmigo, your aid-driven companion who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many exciting features that support teachers, and this video will showcase ways you can use Kigo to create course-specific mathem…
Introduction to price elasticity of supply | APⓇ Microeconomics | Khan Academy
We’ve done many videos on the price elasticity of demand. Now we’re going to focus on the price elasticity of supply, and it’s a very similar idea; it’s just being applied to supply. Now, it’s a measure of how sensitive our quantity supplied is to percen…
Unraveling a Mapmaker’s Dangerous Decision | Podcast | Overheard at National Geographic
So I told them that they didn’t have a chance, and for the sake of their wives and children, they should vacate the area and go back. Both of them sunk, and at that time I heard the cocking of weapons. Once both of them cocked their weapons, I knew they m…