yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using recursive formulas of geometric sequences | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

The geometric sequence ( a_i ) is defined by the formula where the first term ( a_1 ) is equal to -1/8 and then every term after that is defined as being so ( a_i ) is going to be two times the term before that. So, ( a_i ) is ( 2 \times a_{i-1} ).

What is ( a_4 ), the fourth term in the sequence? Pause the video and see if you can work this out.

Well, there's a couple of ways that you could tackle this. One is to just directly use these formulas. So, we could say that ( a_4 ), well, that's going to be this case right over here: ( a_4 ) is going to be equal to ( 2 \times a_3 ).

Well, ( a_3 ) if we go and use this formula is going to be equal to ( 2 \times a_2 ). Each term is equal to two times the term before it, and then we can go back to this formula again and say ( a_2 ) is going to be ( 2 \times a_1 ): ( 2 \times a_1 ).

And lucky for us, we know that ( a_1 ) is -1/8, so it's going to be ( 2 \times -1/8 ), which is equal to -1/4.

So, this is -1/4. Thus, ( 2 \times -1/4 ) is equal to -1/2 or -1/2.

So, ( a_4 ) is ( 2 \times a_3 ). ( a_3 ) is -1/2, so this is going to be ( 2 \times -1/2 ), which is going to be equal to -1.

So that's one way to solve it. Another way to think about it is: look, we have our initial term and we also know our common ratio. We know each successive term is two times the term before it.

So, we could explicitly write it as ( a_i ) is going to be equal to our initial term -1/8, and then we're going to multiply it by two. We're going to multiply it by ( 2^{i-1} ) times.

So, we could say, times ( 2^{i-1} ). Let's make sure that makes sense. So ( a_1 ) based on this formula ( a_1 ) would be -1/8 times ( 2^{1-1} ) which is ( 2^0 ). So that makes sense; that would be -1/8 based on this formula.

( a_2 ) would be -1/8 times ( 2^{2-1} ) so ( 2^1 ). So we're going to take our initial term and multiply it by 2 once, which is exactly right.

( a_2 ) is -1/4. So if we want to find the fourth term in the sequence, we could just say, well, using this explicit formula, we could say ( a_4 ) is equal to -1/8 times ( 2^{4-1} ), which is -1/8 times ( 2^3 ).

So this is equal to -1/8 times 8.

Thus, -1/8 times 8 equals -1.

And you might be a little bit tossed up on which method you want to use, but for sure this second method right over here where we come up with an explicit formula once we know the initial term and we know the common ratio—this would be way easier if you were trying to find, say, the 40th term.

Because doing the 40th term recursively like this would take a lot of time and frankly a lot of paper.

More Articles

View All
Trump More Likely To Win The Election?
I’m just getting a feeling like I had in 2016 that this is Trump’s to lose. Now, what’s your feeling telling you? Well, you know, there’s—and I get this data pretty well every morning—there’s 43 counties in seven states. 45% of the population hates Trump…
The Coolest ''''Country''''' Flag You Need To Know
Antarctica is Earth’s coolest continent, and the most complicatedly claimed continent. Yet sadly, it has no official flag to unite her. Nay, you might say. There’s this! And that flag is Antarctica-associated, but it’s not official official, and comes wit…
What's in Bill Gates' $47 Billion Stock Portfolio?
Bill Gates, the internet sensation. You might know him as the guy that jumped over a chair or the guy that has no idea what the price of groceries are. Or you might know him as the genius co-founder of Microsoft and the world’s seventh richest man, just b…
How to sell a $14,000,000 private jet!
[Music] So yeah [Music] Avatar and Global Express. Yes sir, it’s your 2005. What can I tell you? 13 million five hundred thousand. Are you doing this for a customer? No, no. We have a small jet at the moment. We have a little 35A. Uh, it’s really hunting …
Taking Landscape Photos | National Geographic
Being confirmed as a finalist, nothing like this has ever happened to me before in my life. I still can’t believe I made it to this point. I can only hope that my photographs give people a sense of who I am. My name is Nina Ritchie, and I live in Chinle,…
ChatGPTIntro
Hello! So, what I’m going to do in this video alongside you is explore using ChatGPT, which I’m sure many of you have heard of. So the first question is: Why is it called ChatGPT? Well, the GPT part stands for Generative Pre-trained Transformer, and I gu…