yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Using recursive formulas of geometric sequences | Mathematics I | High School Math | Khan Academy


2m read
·Nov 11, 2024

The geometric sequence ( a_i ) is defined by the formula where the first term ( a_1 ) is equal to -1/8 and then every term after that is defined as being so ( a_i ) is going to be two times the term before that. So, ( a_i ) is ( 2 \times a_{i-1} ).

What is ( a_4 ), the fourth term in the sequence? Pause the video and see if you can work this out.

Well, there's a couple of ways that you could tackle this. One is to just directly use these formulas. So, we could say that ( a_4 ), well, that's going to be this case right over here: ( a_4 ) is going to be equal to ( 2 \times a_3 ).

Well, ( a_3 ) if we go and use this formula is going to be equal to ( 2 \times a_2 ). Each term is equal to two times the term before it, and then we can go back to this formula again and say ( a_2 ) is going to be ( 2 \times a_1 ): ( 2 \times a_1 ).

And lucky for us, we know that ( a_1 ) is -1/8, so it's going to be ( 2 \times -1/8 ), which is equal to -1/4.

So, this is -1/4. Thus, ( 2 \times -1/4 ) is equal to -1/2 or -1/2.

So, ( a_4 ) is ( 2 \times a_3 ). ( a_3 ) is -1/2, so this is going to be ( 2 \times -1/2 ), which is going to be equal to -1.

So that's one way to solve it. Another way to think about it is: look, we have our initial term and we also know our common ratio. We know each successive term is two times the term before it.

So, we could explicitly write it as ( a_i ) is going to be equal to our initial term -1/8, and then we're going to multiply it by two. We're going to multiply it by ( 2^{i-1} ) times.

So, we could say, times ( 2^{i-1} ). Let's make sure that makes sense. So ( a_1 ) based on this formula ( a_1 ) would be -1/8 times ( 2^{1-1} ) which is ( 2^0 ). So that makes sense; that would be -1/8 based on this formula.

( a_2 ) would be -1/8 times ( 2^{2-1} ) so ( 2^1 ). So we're going to take our initial term and multiply it by 2 once, which is exactly right.

( a_2 ) is -1/4. So if we want to find the fourth term in the sequence, we could just say, well, using this explicit formula, we could say ( a_4 ) is equal to -1/8 times ( 2^{4-1} ), which is -1/8 times ( 2^3 ).

So this is equal to -1/8 times 8.

Thus, -1/8 times 8 equals -1.

And you might be a little bit tossed up on which method you want to use, but for sure this second method right over here where we come up with an explicit formula once we know the initial term and we know the common ratio—this would be way easier if you were trying to find, say, the 40th term.

Because doing the 40th term recursively like this would take a lot of time and frankly a lot of paper.

More Articles

View All
Help support Khan Academy
Hi everyone, Sal Khan here from Khan Academy, and I just wanted to remind you that we are a not-for-profit, and we can only exist through donations from folks like yourself. Our goal is for everyone to reach their potential. Potential is everywhere; unfo…
The Muse's Kathryn Minshew Speaks at the Female Founders Conference 2016
[Music] Hi everybody! Thank you so much. I’m so excited to be here. My name is Katherine Mchu, and I’ve spent the last four and a half years building a company called The Muse. We provide expert advice for every career decision, and you can think of us a …
Philosophy's Biggest Questions
You’ve probably heard of the trolley problem, especially if you’re at all interested in philosophy or ethics. Lately, it’s been a subject of discussion when discussing autonomous cars and was referenced explicitly in the show “The Good Place.” Some people…
How the Quantum Vacuum Gave Rise to Galaxies
We take it for granted that our universe contains planets, stars, and galaxies because those are the things we see. But the only reason these big structures exist is because of the nature of nothingness - empty space. But to understand why, we have to go…
Why Charlie Munger Continues to Buy Alibaba Stock
The Daily Journal recently bought a large position in Alibaba after founder Jack Ma had been reprimanded by the Chinese Communist Party, and Ma’s other company, Ant, was not allowed to proceed with its IPO. What are your current thoughts on China and whet…
LearnStorm Growth Mindset: Dave Paunesku introduces growth mindset
I’m Dave Ponesku and I’m the executive director of Pertz, which is the Project for Education Research at Scale. It’s a center at Stanford University. Pertz makes a variety of resources that help educators learn about the science of motivation, and we do t…