yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Games and modularity | Intro to CS - Python | Khan Academy


3m read
·Nov 10, 2024

So you want to build a game, but how would you even get started? Most games we play have thousands of lines of code; some even have millions. Try and imagine a program with thousands of lines of code all in a single file. Sounds like a nightmare to navigate and nearly impossible to debug.

So how do programmers do it? We use a strategy that in programming we call modularity. Or in simpler terms, we break down the problem. Say I want to build a cozy role-playing game; what might that entail?

Well, I can kind of break that down into different categories of activities. Like there's farming, fishing, mining, crafting, and then within each of those categories, I can break it down further into the different actions players might take. So within farming, you might be able to plant, fertilize, water, harvest, maybe trample.

Once I have that breakdown mapped out, I can focus on solving each individual sub-problem in isolation, one at a time, instead of trying to juggle all the pieces of the game at once. For example, maybe I start off by thinking about what it means to harvest, and then I write the code for that small piece of the game. Like maybe the plant returns a random number of vegetables based on how well the player cared for it over its lifetime.

Notice how that small sub-problem was a lot easier to tackle than the bigger problem of building the farming mechanics, and way easier than the big problem of building a role-playing game. By breaking down the program into modular components like this, programmers get a lot of benefits.

For one, it allows them to easily collaborate with other programmers. One team can own the farming component, and another team can own the fishing component. And within farming, I can work on harvesting, and my teammate can work on planting. We'll have to integrate the different components eventually, but for now, it's easy for me to focus on my task without having to worry about conflicting with my teammate's code.

Two, it makes the code much easier to test and debug. If I gave you the whole program and asked, "Does this game work?" I bet you'd have a real hard time giving me a definitive answer. But if instead I gave you a real small piece of code and asked, "Hey, does this harvesting code work?" you could probably verify that without a horrible amount of effort. If we've tested all the smaller components as we built them, we can have a lot more confidence that the final product works.

It's kind of like a mechanic working on a car. To check if there's any issues, they don't just take the car out and drive around for hours until something breaks down. Instead, it's much easier for them to test the individual components. They can check that the brakes work, the transmission works, the HVAC works, and if all the individual components work, then there's a good chance the whole car works, too.

Three, it makes the code a lot more readable and easy to work with. Instead of one giant mess of code, we've organized it based on task, which makes it easier to find what we're looking for when we need it. Typically, when we modularize a program, we organize it into different modules, where each module or file contains the code for a related set of functionality.

Then, within a module, we break down that functionality into individual functions, where each function contains the instructions for performing a specific task. So in our farming module, we might have a function called Harvest that contains the lines of code needed to perform the Harvest action, and then we might organize the planting-related code into a Plant function.

Now we've probably seen modules and functions before when we've used the ones that other people have written. Like the Random module collects a bunch of functionality related to randomness and organizes that into functions like rand. As we write programs that get bigger and more complex, we need a way to organize our code, too, so we're not left with a single main.py file with a giant mess of code.

That means it's time to learn how to write our own functions in our own modules, so we can make our code more reusable, testable, and maintainable. So let's get organized.

More Articles

View All
Top Ways Startups Waste Money
I’ll say this: if you want to get really good at firing vendors, hiring a PR agency is a great way to get your feet wet, right? Because I don’t know anyone that’s ever hired a PR agency that hasn’t fired PR agencies. [Music] Hello, this is Michael with H…
Introduction to the coordinate plane
You’re probably familiar with the notion of a number line where we can take a number and associate it with a point on the number line. So for example, the number 2, I would go, I would start at 0, and I’d go 1, 2 to the right, and I would end up right ove…
Introduction to adding decimals tenths
In this video, we’re going to introduce ourselves to the idea of adding decimals, and I encourage you, as we work through these problems, to keep pausing the video and seeing if you can think about it on your own before we work through it together. We’re …
The Ebola Outbreak of 1976 | Going Viral
NARRATOR: In 1976, a deadly illness erupted in a remote province of Zaire. [music playing] Belgian nuns tending to the sick described horrific symptoms followed by agonizing deaths. REID WILSON: It attacks tissue around the body. It basically attacks eve…
What 300 DIRTY JOBS Taught Mike Rowe About TRUE SUCCESS | Kevin O'Leary
If I were in a seat, I’d be on the edge of it. All right, here we go. [Music] You are watching yet another episode of Mr. Wonderful. I’m not him; I’m just a guest. I might grow your questions; we answer them. It’s gonna be great. Hi, my name is Monty. I’…
Brie Larson Eats a Rhino Beetle | Running Wild With Bear Grylls
So were you kind of adventurous when you were growing up, or– I wanted to be Indiana Jones when I was younger, but then– Really? –I also was super shy. And were you like, sporty? No, not at all. BEAR GRYLLS: So what, more geeky? I was super geeky. …