yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Infinity


3m read
·Nov 4, 2024

Processing might take a few minutes. Refresh later.

So imagine you're Usain Bolt. You're like six and a half feet tall. You have a couple Olympic medals—no biggie. You show up to your final Olympic race, and your only opponent is a tortoise. For some reason, he has gold medals around his neck. He can talk and he challenges you to a hundred meter race. You're confused, but you accept his challenge.

His only condition is that he gets a 50 meter head start. I mean, seems fair, right? He is only a tortoise. So you'd line up at the start of the race, and the gun goes off. The tortoise begins his 50 meter head start. It's gonna take a while, so feel free to get a coffee, go home, take a nap—just do whatever you want.

After a while, he finally gets to the 50 meter mark, and you sprint to catch up with him. But in the time that it took you to get to the 50 meter mark, where the tortoise was, he's moved forward another 10 meters. No problem; you just have to catch up to the point to where he is now. But wait! Once you get to that point, the tortoise has moved forward another five meters.

So you have to catch up again. This process continues to repeat and repeat an infinite amount of times. We can continue cutting the distance between you and the tortoise in half as many times as we want. It'll take a finite amount of time to complete, but the distances can continue to be cut in half forever.

Let's say it takes you five seconds to run the initial 50 meters, then another one second to run the extra 10 meters, then another half a second to run the next five. All of these times are finite, but there's an infinite amount of distances you have to travel. So by this logic, it should take an infinite amount of time to catch up to the tortoise, right? You can never catch up to the tortoise.

In the end, he beats you in the race. It makes no sense, but this logic says you literally cannot pass him without doing more than an infinite amount of tasks. Not only can you not beat the tortoise, but you can't move anywhere without doing an infinite number of tasks. Thus, movement from your bed to your refrigerator should take an infinite amount of time.

So where's our math wrong, or is motion impossible? [Music] Clearly, this argument is insane. I mean, race any tortoise in the world, and you'll beat it in a race every single time. But where's the flaw in the logic?

This is known as one of Zeno's paradoxes. There are multiple, but they all are just the same thing: motion, as we know it, is an illusion. The thought is, in order to finish the race, or really any movement in general, you'd first have to get halfway between your starting point and the finish line, which in the race's case is 50 meters. From there, you'd have to get to the halfway point between the 50 meter point and the finish line, the 75 meter point.

This continues being cut in half an infinite amount of times. This idea can also be reversed, and this is where things get interesting. If we reverse the sequence, what number comes first? We can't start at 50 because we can divide that by two. We can't start at 25 because we can divide that in half as well. In fact, we can divide any finite number in half an infinite amount of times.

This means that there is no first distance to run, therefore making motion impossible, or maybe not impossible, but just an illusion. The idea was that because there's an infinite amount of distances being added, they must take an infinite amount of time to complete, right? Not really. Zeno was wrong to assume that there's an infinite amount of distance to traverse.

Calculus kind of solves the problem. With the example of the 100-meter race, cutting their distance in half each time just creates what is known as a convergent series. When you add all of the infinite amount of terms in this series together, you don't get infinity; you get 100—a total distance of the race. All of the terms, when added together, converge to 100. This solves the problem of infinite distance.

But what about the race versus the tortoise? We obviously know that you'd pass the tortoise during the race. But how? If you run at 10 meters per second while the tortoise only moves at 2 meters per second, well after his 50 me...

More Articles

View All
Simple polynomial division
Let’s say someone walks up to you on the street and they give you this expression: x squared plus 7x plus 10 divided by x plus 2. They say, “See if you could simplify this thing.” So, pause this video and see if you can do that. One way to think about it…
Camille Fournier on Managing Technical Teams
All right, Camila Fournier, welcome to the podcast. Thank you for having me! So, you are a managing director at 2 Sigma, former CTO of Rent the Runway, former VP of Technology at Goldman Sachs, also an author. Your first book was The Manager’s Path: A Gu…
Constructing exponential models: half life | Mathematics II | High School Math | Khan Academy
We’re told carbon 14 is an element which loses exactly half of its mass every 5,730 years. The mass of a sample of carbon 14 can be modeled by a function m which depends on its age t in years. We measure that the initial mass of a sample of carbon 14 is 7…
Super Coral That Can Survive Global Warming | National Geographic
In 1998, 18% of the world’s reefs died as a result of a global bleaching event. Many people believe that we’ve now lost up to 30% of the world’s reefs. Another 30% are critically endangered, and the potential for us to see massive degradation in all reef …
How secure is 256 bit security?
In the main video on cryptocurrencies, I made two references to situations where in order to break a given piece of security, you would have to guess a specific string of 256 bits. One of these was in the context of digital signatures, and the other in th…
Frogs Come Alive After Winter Thaw | National Geographic
NARRATOR: While the rivers and ponds are melting, the ground remains frozen. And under the leaf litter, someone is pulling off a miracle. [intriguing music] This wood frog is frozen solid. Even his eyes are iced over. There’s no pulse, no breath. Slowly t…