yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral properties (no graph): function combination | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Given that the definite integral from -1 to 3 of f of x dx is equal to -2, and the definite integral from -1 to 3 of G of x dx is equal to 5, what is the definite integral from -1 to 3 of 3 f of x - 2 G of x dx?

All right, so to think about this, what we could use is some of our integration properties.

The first thing that I would want to do is split this up into two integrals. We know that, and this is true of definite or indefinite integrals, that the integral of f of x plus or minus G of x dx is going to be equal to the integral of f of x dx plus or minus the integral of G of x dx. If this is a plus, this is going to be a plus; if this is a minus, this is going to be a minus.

So we could split this up the same way. This is going to be equal to the definite integral from -1 to 3 of 3 f of x dx minus the integral from -1 to 3 of 2 G of x dx. Notice all I did is I split it up. Taking the integral of the difference of these functions is the same thing as taking the difference of the integrals of those functions.

Now, the next thing we can do is take the scalars we're multiplying the functions on the inside by these numbers, three and two, and we can take those outside of the integral. That comes straight out of the property that if I'm taking the integral of some constant times f of x dx, that is equal to the constant times the integral of f of x dx.

So I can rewrite this as—let's see—I can rewrite this first integral as 3 times the definite integral from -1 to 3 of f of x dx, plus 2 times the definite integral from -1 to 3 of G of x dx. Actually, let me do the second one in a different color—minus, this is going to be magenta—minus 2 times the integral from -1 to 3 of G of x dx.

So what is this going to be equal to? Well, they tell us what this thing is here that I'm underlying in orange: the integral from -1 to 3 of f of x dx is equal to -2, so that thing is -2. Likewise, this thing right over here, the definite integral from -1 to 3 of G of x dx, they give it right over here; it's equal to 5, so that's equal to 5.

Therefore, the whole thing is going to be 3 times -2, which is equal to -6, minus 2 times 5, which is -10, and that's equal to -16. And we're done.

More Articles

View All
Is this the coolest office?
Hey Steve, I love your office! Could you show me around? Sure! What would you like to see? I guess the pictures. Cool, let’s do that. Well, let’s see. Starting from Piers to switch with Ronald Reagan. This is when I was about, I don’t know, 26 or 27 ye…
Adam Brown on how to be resilient during a time of high stress and anxiety | Homeroom with Sal
Hi everyone, welcome to the daily homeroom live stream. Sal here from Khan Academy. For those of you who are wondering what this is, this live stream is something we started as soon as we saw schools starting to get closed around the world. Because we saw…
One Man’s Mission to Revive the Last Redwood Forests | Short Film Showcase
While people have asked me, you know, what’s it like for you, David, when you, you know, what’s it like when you walk through one of these groves of old-growth redwoods? By far, hands down, the most spiritual, profound, conscious-altering in a positive wa…
15 Billionaire Beliefs That Made Them Billionaires
Sure. Okay. Luck, location, and timing play an enormous part in the outcome. But we’ve been deconstructing billionaires for over a decade now, and the amount of overlap in the way their brain works is crazy. Here are 15 ways billionaires think differently…
BRA GUN??? -- Mind Blow #17
A bra gun holster? An electromagnet plus balls equals woooo! Vsauce, Kevin here. This is Mind Blow. Touch screens are okay, but how about touching a force field? Using infrared sensors, this multi-touch system allows a traditional monitor to be manipulat…
Turning Roadkill Into Art | National Geographic
I think what I’m aiming for is this notion of, I guess, seduction and revulsion. Something that’s really beautiful, really lush, rubbing up against something that’s also perhaps repulsive. I’m an artist and roadkill resurrector. The first body of work th…