yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral properties (no graph): function combination | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Given that the definite integral from -1 to 3 of f of x dx is equal to -2, and the definite integral from -1 to 3 of G of x dx is equal to 5, what is the definite integral from -1 to 3 of 3 f of x - 2 G of x dx?

All right, so to think about this, what we could use is some of our integration properties.

The first thing that I would want to do is split this up into two integrals. We know that, and this is true of definite or indefinite integrals, that the integral of f of x plus or minus G of x dx is going to be equal to the integral of f of x dx plus or minus the integral of G of x dx. If this is a plus, this is going to be a plus; if this is a minus, this is going to be a minus.

So we could split this up the same way. This is going to be equal to the definite integral from -1 to 3 of 3 f of x dx minus the integral from -1 to 3 of 2 G of x dx. Notice all I did is I split it up. Taking the integral of the difference of these functions is the same thing as taking the difference of the integrals of those functions.

Now, the next thing we can do is take the scalars we're multiplying the functions on the inside by these numbers, three and two, and we can take those outside of the integral. That comes straight out of the property that if I'm taking the integral of some constant times f of x dx, that is equal to the constant times the integral of f of x dx.

So I can rewrite this as—let's see—I can rewrite this first integral as 3 times the definite integral from -1 to 3 of f of x dx, plus 2 times the definite integral from -1 to 3 of G of x dx. Actually, let me do the second one in a different color—minus, this is going to be magenta—minus 2 times the integral from -1 to 3 of G of x dx.

So what is this going to be equal to? Well, they tell us what this thing is here that I'm underlying in orange: the integral from -1 to 3 of f of x dx is equal to -2, so that thing is -2. Likewise, this thing right over here, the definite integral from -1 to 3 of G of x dx, they give it right over here; it's equal to 5, so that's equal to 5.

Therefore, the whole thing is going to be 3 times -2, which is equal to -6, minus 2 times 5, which is -10, and that's equal to -16. And we're done.

More Articles

View All
How To Get Excited About Life Again #Shorts
You don’t need a vacation to feel excited or refreshed about your life in the world. New things are waiting around the corner if you just open your eyes and look for them. Constantly challenge yourself to learn new skills, like maybe learning a new cuisin…
Sewage treatment | Aquatic and Terrestrial Pollution | AP Environmental Science | Khan Academy
This is my cat, Rubiks. One of the many amazing things about Rubiks is that he naturally works to keep himself clean. His barbed tongue is really good at getting rid of the dust and dirt that he gets in his fur every day, but sometimes he needs a little h…
Why Is Yawning Contagious?
Hey, Vsauce. Michael here. And today we’re going to talk about yawning. Why do we yawn and why is yawning contagious? How come when I see someone yawn or even think about it, it makes me kinda of want to yawn? First things first, definitions. When you y…
Khan Academy Ed Talks featuring Ben Gomes - Thursday, April 22
Hello and welcome to Ed Talks with Khan Academy, where we talk to influential people in the education space. Today, we are happy to welcome Ben Gomes, who’s the Senior Vice President of the Learning and Education organization at Google. Before we get int…
The Muse's Kathryn Minshew Speaks at the Female Founders Conference 2016
[Music] Hi everybody! Thank you so much. I’m so excited to be here. My name is Katherine Mchu, and I’ve spent the last four and a half years building a company called The Muse. We provide expert advice for every career decision, and you can think of us a …
The Ultimate Conspiracy Debunker
The Internet is like a breeding ground for conspiracy theories. While some are just stupid and funny, others promote ignorance and an unhealthy distrust. So we went to the Kurzgesagt lab and developed a foolproof system to destroy not all but a lot of con…