yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral properties (no graph): function combination | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Given that the definite integral from -1 to 3 of f of x dx is equal to -2, and the definite integral from -1 to 3 of G of x dx is equal to 5, what is the definite integral from -1 to 3 of 3 f of x - 2 G of x dx?

All right, so to think about this, what we could use is some of our integration properties.

The first thing that I would want to do is split this up into two integrals. We know that, and this is true of definite or indefinite integrals, that the integral of f of x plus or minus G of x dx is going to be equal to the integral of f of x dx plus or minus the integral of G of x dx. If this is a plus, this is going to be a plus; if this is a minus, this is going to be a minus.

So we could split this up the same way. This is going to be equal to the definite integral from -1 to 3 of 3 f of x dx minus the integral from -1 to 3 of 2 G of x dx. Notice all I did is I split it up. Taking the integral of the difference of these functions is the same thing as taking the difference of the integrals of those functions.

Now, the next thing we can do is take the scalars we're multiplying the functions on the inside by these numbers, three and two, and we can take those outside of the integral. That comes straight out of the property that if I'm taking the integral of some constant times f of x dx, that is equal to the constant times the integral of f of x dx.

So I can rewrite this as—let's see—I can rewrite this first integral as 3 times the definite integral from -1 to 3 of f of x dx, plus 2 times the definite integral from -1 to 3 of G of x dx. Actually, let me do the second one in a different color—minus, this is going to be magenta—minus 2 times the integral from -1 to 3 of G of x dx.

So what is this going to be equal to? Well, they tell us what this thing is here that I'm underlying in orange: the integral from -1 to 3 of f of x dx is equal to -2, so that thing is -2. Likewise, this thing right over here, the definite integral from -1 to 3 of G of x dx, they give it right over here; it's equal to 5, so that's equal to 5.

Therefore, the whole thing is going to be 3 times -2, which is equal to -6, minus 2 times 5, which is -10, and that's equal to -16. And we're done.

More Articles

View All
Debunking the 'Pointless' Education Myth | StarTalk
People think that when they take math in school, there’s the common response like, “I will never need to use this for the rest of my life,” as they learn trig identities or the Pythagorean theorem or whatever it is that we all remember learning, feeling p…
Stringless Yo-Yo!
Can you just like … Yo-Yo like a basic Yo-Yo? Yeah, like this. But this is not a basic Yo-Yo. No! That is awesome! Nicely done! This is Ben Conde, he’s got a brand new channel on YouTube which is about Yo-Yoing like a crazy person. But, I’m going t…
15 Lessons Rich Parents Teach Their Kids
The right piece of advice at the right time can make great differences in the long run. The kids of the rich have a massive head start, not because of the resources they already have, but because of the mindset their parents instill within them. They star…
How To Do This ‘Stoic’ Thing? | Books
How can we apply Stoicism in our daily lives? This is what a book, Practical Stoicism: Exercises for Doing the Right Thing Right Now, is all about. Robbing Homer offered me the opportunity to listen to the Audible version of this book, which he narrated, …
Close Gorilla Encounter | Explorer
That’s a monkey. Oh, wonderful! Hey, you can have a chance to see some gorillas! As you can see, gor—are you kidding me? It’s gorilla D! Is it fresh? It’s for today. We’re lucky, huh? Yeah, you know this. We are approaching the gorilla, so we have to wea…
BLINK | Official Trailer - Audio Description | National Geographic Documentary Films
Logo Disney. A woman and girl watch the desert sunset. If you close your eyes, what do you feel? Sand slips through her hands, the wind. I feel the sun. And do you think even if you couldn’t see, you’d be able to enjoy a place like this? Logo documentary…