yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral properties (no graph): function combination | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Given that the definite integral from -1 to 3 of f of x dx is equal to -2, and the definite integral from -1 to 3 of G of x dx is equal to 5, what is the definite integral from -1 to 3 of 3 f of x - 2 G of x dx?

All right, so to think about this, what we could use is some of our integration properties.

The first thing that I would want to do is split this up into two integrals. We know that, and this is true of definite or indefinite integrals, that the integral of f of x plus or minus G of x dx is going to be equal to the integral of f of x dx plus or minus the integral of G of x dx. If this is a plus, this is going to be a plus; if this is a minus, this is going to be a minus.

So we could split this up the same way. This is going to be equal to the definite integral from -1 to 3 of 3 f of x dx minus the integral from -1 to 3 of 2 G of x dx. Notice all I did is I split it up. Taking the integral of the difference of these functions is the same thing as taking the difference of the integrals of those functions.

Now, the next thing we can do is take the scalars we're multiplying the functions on the inside by these numbers, three and two, and we can take those outside of the integral. That comes straight out of the property that if I'm taking the integral of some constant times f of x dx, that is equal to the constant times the integral of f of x dx.

So I can rewrite this as—let's see—I can rewrite this first integral as 3 times the definite integral from -1 to 3 of f of x dx, plus 2 times the definite integral from -1 to 3 of G of x dx. Actually, let me do the second one in a different color—minus, this is going to be magenta—minus 2 times the integral from -1 to 3 of G of x dx.

So what is this going to be equal to? Well, they tell us what this thing is here that I'm underlying in orange: the integral from -1 to 3 of f of x dx is equal to -2, so that thing is -2. Likewise, this thing right over here, the definite integral from -1 to 3 of G of x dx, they give it right over here; it's equal to 5, so that's equal to 5.

Therefore, the whole thing is going to be 3 times -2, which is equal to -6, minus 2 times 5, which is -10, and that's equal to -16. And we're done.

More Articles

View All
The Berkshire Hathaway Shareholder Meeting (From Then To Now)
Warren Buffett, the CEO of Berkshire Hathaway, is without doubt the king of investing. There’s never been anyone with a track record close to his, and it’s unlikely there will be for a very, very long time. Buffett took over Berkshire Hathaway back in 196…
A Tale of Two Credit Scores | Teacher Resources | Financial Literacy | Khan Academy
[Music] Con Academy proudly presents a tale of two credit scores. This is Jana. Hi! And this is Bob. Good morning! Narrator: Hi Bob! These two charming characters are co-workers, each with the same job and salary. They both need a vehicle, so they’ve tr…
Model Context Protocol (MCP), clearly explained (why it matters)
Greg: Everyone is talking about mcps, it’s gone completely viral, but the reality is most people have no idea what mcps are and what they mean and what are the startup opportunities associated with it. So in this episode I brought Professor Ross Mike who …
"You Will NEVER Be Able to Afford to Retire" - BlackRock CEO Larry Fink
People working longer should we making a possible facility? Should we frankly increase the age for Social Security? What if I told you there was a $14 trillion crisis brewing in the United States that, until now, virtually no one had been paying attention…
Example: Analyzing distribution of sum of two normally distributed random variables | Khan Academy
Shinji commutes to work, and he worries about running out of fuel. The amount of fuel he uses follows a normal distribution for each part of his commute, but the amount of fuel he uses on the way home varies more. The amounts of fuel he uses for each part…
Comparing income trends across countries | Macroeconomics | Khan Academy
The goal of this video is to understand how median per capita income after taxes has trended in the United States in comparison to some other countries over a 30-year period, and the 30-year period for this chart is from 1980 to 2010. So, for example, in…