yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Intermediate value theorem example | Existence theorems | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

Let F be a continuous function on the closed interval from -2 to 1, where F of -2 is equal to 3 and F of 1 is equal to 6. Which of the following is guaranteed by the intermediate value theorem?

So before I even look at this, what do we know about the intermediate value theorem? Well, it applies here; it's a continuous function on this closed interval. We know what the value of the function is at -2: it's three. So let me write that F of -2 is equal to 3, and F of one, they tell us right over here, is equal to 6.

All the intermediate value theorem tells us—and if this is completely unfamiliar to you, I encourage you to watch the video on the intermediate value theorem—is that if we have a continuous function on some closed interval, then the function must take on every value between the values at the endpoints of the interval.

Or another way to say it is for any L between 3 and 6, there is at least one C in the interval from -2 to 1 such that F of C is equal to L. This comes straight out of the intermediate value theorem. Just saying it in everyday language: this is a continuous function. Actually, I'll draw it visually in a few seconds, but it makes sense that if it's continuous, if I were to draw the graph, I can't pick up my pencil.

Well then it makes sense that I would have to take on every value between 3 and 6, or there's at least one point in this interval where I take on any given value between 3 and 6. So let's see which of these answers are consistent with that, and we only pick one.

So, F of C equals 4. That would be a case where L is equal to 4. So if there's at least one C in this interval such that F of C is equal to 4, we could say that. But they're trying to confuse us.

All right, F of C equals 0 for at least 1 C between -2 and 1. Well, here they got the interval along the x-axis right; that's where the C would be between. But it's not guaranteed by the intermediate value theorem that F of C is going to be equal to 0, because 0 is not between 3 and 6. So I'm going to rule that one out.

I'm going to rule this one out; it's saying F of C equals 0. And let's see, we're only left with this one, so I hope it works. So, F of C is equal to 4. Well, that seems reasonable because 4 is between 3 and 6 for at least one C between -2 and 1. Well, yeah, because that's in this interval right over here, so I am feeling good about that.

We could think about this visually as well; the intermediate value theorem, when you think about it visually, makes a lot of sense. So let me draw the x-axis first actually, and then let me draw my y-axis. I'm going to draw them at different scales because my Y-axis—well, let's see, if this is 6, this is 3. That's my y-axis; this is 1, this is -1, this is -2.

And so, we're continuous on the closed interval from -2 to 1, and F of -2 is equal to 3. So let me plot that; F of -2 is equal to 3, so that's right over there, and F of one is equal to 6, so that's right over there.

So let's try to draw a continuous function. A continuous function includes these points, and it's continuous. So an intuitive way to think about it is I can't pick up my pencil if I'm drawing the graph of the function which contains these two points. I can't pick up my pencil; I can't do that. That would be picking up my pencil.

So, it is a continuous function, so it takes on every value, as we can see. It definitely does that; it takes on every value between 3 and 6. It might take on other values, but we know for sure it has to take on every value between 3 and 6.

And so, when if we think about 4, 4 is right over here. The way I drew it, it actually looks like it's almost taking on that value right at the Y-axis. I forgot to label my x-axis here, but you can see it took on that value in the case between -2 and 1, and I could have drawn that graph multiple different ways.

I could have drawn it like this. Actually, it takes on multiple times; it takes on the value 4 here. So this could be our C, but once again, it's between the interval -2 and 1. This could be our C, once again in the interval between -2 and 1. Or this could be our C in between the interval of -2 and 1.

That's just the way I happened to draw it. I could have drawn this thing as just a straight line; I could have drawn it like this, and then it looks like it's taking on 4 only once, and it's doing it right around there.

This isn't necessarily true that you take on—you take on that you become 4 for at least one C between 3 and 6. Three and six aren't even on our graph here. I would have to go all the way to 2, 3.

No, there's no guarantee that our function takes on 4 for one C between 3 and 6. We don't even know what the function does when X is between 3 and 6.

More Articles

View All
Worked examples: Calculating equilibrium constants | Equilibrium | AP Chemistry | Khan Academy
An equilibrium constant can be calculated from experimentally measured concentrations or partial pressures of reactants and products at equilibrium. As an example, let’s look at the reaction where N2O4 in the gaseous state turns into 2NO2, also in the gas…
Facebook Freebooting - Smarter Every Day 128
Hey, it’s me Destin. Welcome back to Smarter Every Day. I want to do something a little bit different today; let’s start with a story. Once there was a kingdom where wealth was determined by what sheep you owned. There was a rich man who had many, many s…
Dot Com Makes Good | Wicked Tuna
We’re gonna go over to Dave and check his fish out. Steam it, steam it, baby! You having fun yet? Huh? Yeah, huh? This is no round just drive-bys, right? We mark that man big. The meat is pink, beautiful! Here, we’re gonna make a lot of money here. Till …
Jumping Ship | Yukon River Run
[Music] Joshy, where you think you can run this raft yourself? In all honesty, getting that thing down with one person’s next impossible. But, uh, I need to get this raft down river. Maybe I’ll switch over; I could use the help. That would be great. Bot…
What Can We Learn From History? - Little Kids, Big Questions | America Inside Out
It is important to learn the history of the United States because you can learn new things about what happened then and how it is now, and how you can change the world. We learn about history so we do not repeat the mistakes that people have made in histo…
Organization in the human body | Cells and organisms | Middle school biology | Khan Academy
Have you ever thought about how incredible the human body is? For example, just to name a few things that your body’s already been doing today: you’re using your lungs to take breaths in and out, your heart’s beating without stopping, and your brain is co…