yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Intermediate value theorem example | Existence theorems | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

Let F be a continuous function on the closed interval from -2 to 1, where F of -2 is equal to 3 and F of 1 is equal to 6. Which of the following is guaranteed by the intermediate value theorem?

So before I even look at this, what do we know about the intermediate value theorem? Well, it applies here; it's a continuous function on this closed interval. We know what the value of the function is at -2: it's three. So let me write that F of -2 is equal to 3, and F of one, they tell us right over here, is equal to 6.

All the intermediate value theorem tells us—and if this is completely unfamiliar to you, I encourage you to watch the video on the intermediate value theorem—is that if we have a continuous function on some closed interval, then the function must take on every value between the values at the endpoints of the interval.

Or another way to say it is for any L between 3 and 6, there is at least one C in the interval from -2 to 1 such that F of C is equal to L. This comes straight out of the intermediate value theorem. Just saying it in everyday language: this is a continuous function. Actually, I'll draw it visually in a few seconds, but it makes sense that if it's continuous, if I were to draw the graph, I can't pick up my pencil.

Well then it makes sense that I would have to take on every value between 3 and 6, or there's at least one point in this interval where I take on any given value between 3 and 6. So let's see which of these answers are consistent with that, and we only pick one.

So, F of C equals 4. That would be a case where L is equal to 4. So if there's at least one C in this interval such that F of C is equal to 4, we could say that. But they're trying to confuse us.

All right, F of C equals 0 for at least 1 C between -2 and 1. Well, here they got the interval along the x-axis right; that's where the C would be between. But it's not guaranteed by the intermediate value theorem that F of C is going to be equal to 0, because 0 is not between 3 and 6. So I'm going to rule that one out.

I'm going to rule this one out; it's saying F of C equals 0. And let's see, we're only left with this one, so I hope it works. So, F of C is equal to 4. Well, that seems reasonable because 4 is between 3 and 6 for at least one C between -2 and 1. Well, yeah, because that's in this interval right over here, so I am feeling good about that.

We could think about this visually as well; the intermediate value theorem, when you think about it visually, makes a lot of sense. So let me draw the x-axis first actually, and then let me draw my y-axis. I'm going to draw them at different scales because my Y-axis—well, let's see, if this is 6, this is 3. That's my y-axis; this is 1, this is -1, this is -2.

And so, we're continuous on the closed interval from -2 to 1, and F of -2 is equal to 3. So let me plot that; F of -2 is equal to 3, so that's right over there, and F of one is equal to 6, so that's right over there.

So let's try to draw a continuous function. A continuous function includes these points, and it's continuous. So an intuitive way to think about it is I can't pick up my pencil if I'm drawing the graph of the function which contains these two points. I can't pick up my pencil; I can't do that. That would be picking up my pencil.

So, it is a continuous function, so it takes on every value, as we can see. It definitely does that; it takes on every value between 3 and 6. It might take on other values, but we know for sure it has to take on every value between 3 and 6.

And so, when if we think about 4, 4 is right over here. The way I drew it, it actually looks like it's almost taking on that value right at the Y-axis. I forgot to label my x-axis here, but you can see it took on that value in the case between -2 and 1, and I could have drawn that graph multiple different ways.

I could have drawn it like this. Actually, it takes on multiple times; it takes on the value 4 here. So this could be our C, but once again, it's between the interval -2 and 1. This could be our C, once again in the interval between -2 and 1. Or this could be our C in between the interval of -2 and 1.

That's just the way I happened to draw it. I could have drawn this thing as just a straight line; I could have drawn it like this, and then it looks like it's taking on 4 only once, and it's doing it right around there.

This isn't necessarily true that you take on—you take on that you become 4 for at least one C between 3 and 6. Three and six aren't even on our graph here. I would have to go all the way to 2, 3.

No, there's no guarantee that our function takes on 4 for one C between 3 and 6. We don't even know what the function does when X is between 3 and 6.

More Articles

View All
How to Build a Dyson Sphere - The Ultimate Megastructure
Human history is told by the energy we use. At first, we had to use our muscles, then we learned to control fire. We industrialized the world using coal and oil and entered the Atomic Age when we learned how to split a nucleus. At each step, we increased …
Meet the World’s First All-Female Team Created to Combat Poaching | Short Film Showcase
The old-school conservationists laughed at us. They said, “It’s never gonna work.” I’m 25 years old and one of the Black Mambas. I’m looking at other Black Mambas and approaching the unit. They’re always very, very shy at the beginning, and then they get …
Curvature formula, part 1
So, in the last video, I talked about curvature and the radius of curvature. I described it purely geometrically, where I’m saying you imagine driving along a certain road. Your steering wheel locks, and you’re wondering what the radius of the circle that…
How Wall Street is Ruining the Housing Market
Is Wall Street causing the end of the American dream? When most people think of Wall Street, they probably think about the buying and selling of things like stocks, bonds, and commodities. Well, it’s time people started adding something else to that list:…
Connotation | Reading | Khan Academy
[David] Hello, readers. Today, let’s talk about feelings. Specifically, the way the words make us feel. That’s right, I’m talking about connotation. The way the word feels, the context around it. Imagine a rock in a stream. Well, connotation is the way th…
Analyzing structure with linear inequalities: balls | High School Math | Khan Academy
A bag has more green balls than blue balls, and there is at least one blue ball. Let B represent the number of blue balls, and let G represent the number of green balls. Let’s compare the expressions 2B and B + G. Which statement is correct? So, they mak…