yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Intermediate value theorem example | Existence theorems | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

Let F be a continuous function on the closed interval from -2 to 1, where F of -2 is equal to 3 and F of 1 is equal to 6. Which of the following is guaranteed by the intermediate value theorem?

So before I even look at this, what do we know about the intermediate value theorem? Well, it applies here; it's a continuous function on this closed interval. We know what the value of the function is at -2: it's three. So let me write that F of -2 is equal to 3, and F of one, they tell us right over here, is equal to 6.

All the intermediate value theorem tells us—and if this is completely unfamiliar to you, I encourage you to watch the video on the intermediate value theorem—is that if we have a continuous function on some closed interval, then the function must take on every value between the values at the endpoints of the interval.

Or another way to say it is for any L between 3 and 6, there is at least one C in the interval from -2 to 1 such that F of C is equal to L. This comes straight out of the intermediate value theorem. Just saying it in everyday language: this is a continuous function. Actually, I'll draw it visually in a few seconds, but it makes sense that if it's continuous, if I were to draw the graph, I can't pick up my pencil.

Well then it makes sense that I would have to take on every value between 3 and 6, or there's at least one point in this interval where I take on any given value between 3 and 6. So let's see which of these answers are consistent with that, and we only pick one.

So, F of C equals 4. That would be a case where L is equal to 4. So if there's at least one C in this interval such that F of C is equal to 4, we could say that. But they're trying to confuse us.

All right, F of C equals 0 for at least 1 C between -2 and 1. Well, here they got the interval along the x-axis right; that's where the C would be between. But it's not guaranteed by the intermediate value theorem that F of C is going to be equal to 0, because 0 is not between 3 and 6. So I'm going to rule that one out.

I'm going to rule this one out; it's saying F of C equals 0. And let's see, we're only left with this one, so I hope it works. So, F of C is equal to 4. Well, that seems reasonable because 4 is between 3 and 6 for at least one C between -2 and 1. Well, yeah, because that's in this interval right over here, so I am feeling good about that.

We could think about this visually as well; the intermediate value theorem, when you think about it visually, makes a lot of sense. So let me draw the x-axis first actually, and then let me draw my y-axis. I'm going to draw them at different scales because my Y-axis—well, let's see, if this is 6, this is 3. That's my y-axis; this is 1, this is -1, this is -2.

And so, we're continuous on the closed interval from -2 to 1, and F of -2 is equal to 3. So let me plot that; F of -2 is equal to 3, so that's right over there, and F of one is equal to 6, so that's right over there.

So let's try to draw a continuous function. A continuous function includes these points, and it's continuous. So an intuitive way to think about it is I can't pick up my pencil if I'm drawing the graph of the function which contains these two points. I can't pick up my pencil; I can't do that. That would be picking up my pencil.

So, it is a continuous function, so it takes on every value, as we can see. It definitely does that; it takes on every value between 3 and 6. It might take on other values, but we know for sure it has to take on every value between 3 and 6.

And so, when if we think about 4, 4 is right over here. The way I drew it, it actually looks like it's almost taking on that value right at the Y-axis. I forgot to label my x-axis here, but you can see it took on that value in the case between -2 and 1, and I could have drawn that graph multiple different ways.

I could have drawn it like this. Actually, it takes on multiple times; it takes on the value 4 here. So this could be our C, but once again, it's between the interval -2 and 1. This could be our C, once again in the interval between -2 and 1. Or this could be our C in between the interval of -2 and 1.

That's just the way I happened to draw it. I could have drawn this thing as just a straight line; I could have drawn it like this, and then it looks like it's taking on 4 only once, and it's doing it right around there.

This isn't necessarily true that you take on—you take on that you become 4 for at least one C between 3 and 6. Three and six aren't even on our graph here. I would have to go all the way to 2, 3.

No, there's no guarantee that our function takes on 4 for one C between 3 and 6. We don't even know what the function does when X is between 3 and 6.

More Articles

View All
Teaching ELA with Khanmigo
Hi, I’m Michelle, a professional learning specialist here at Khan Academy and a former classroom teacher, just like you. Today, I have the pleasure of introducing you to Kigo, your AI-driven companion who’s revolutionizing teaching for a more engaging and…
Coral Reef Ocean Explorer - Meet the Expert | National Geographic
I’m Lizzy Daly, your host, and I am super thrilled to be back for yet another epic live! Today, if you’re new around here, welcome, welcome, welcome! You are in for a treat. Today, if you’ve been following over the past few weeks, let me tell you—we have …
How did they actually take this picture? (Very Long Baseline Interferometry)
This video is sponsored by KiwiCo, more about them at the end of the show. This is a picture of the supermassive black hole at the center of our Milky Way galaxy known as Sagittarius A*. The black hole itself doesn’t emit light, so what we’re seeing is th…
Neptune 101 | National Geographic
(Mysterious music) [Narrator] Along the dark edges of the Solar System, it floats. Anchored by a star but barely graced by its warmth, this traveler drifts alone, as deceptively calm and elusive as the deep blue sea. Neptune is the eighth planet from the…
ANNOUNCEMENT Smarter Every Day Podcast - "No Dumb Questions"
Hey, it’s me Destin, from Smarter Every Day. Welcome to the No Dumb Questions podcast. This is not Smarter Every Day. When I create videos for Smarter Every Day, I’m usually thinking by myself. Think of it like a creative work of mine. It’s an effort to e…
Humans Are Exceptional
Three out of these four theories have an interesting pattern to them, with good explanations in epistemology. We’re saying conjectures and their refutations, and error correction is how we improve knowledge. With genetic evolution, genetic mutations, vari…