yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example finding area under density curves | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Consider the density curve below. This density curve doesn't look like the ones we typically see that are a little bit curvier, but this is a little easier for us to work with and figure out areas.

They ask us to find the percent of the area under the density curve where x is more than two. So, what area represents when x is more than two? This is when x is equal to two, so they're talking about this area right over here.

We need to figure out the percent of the total area under the curve that this blue area actually represents. So first, let's find the total area under the density curve. The density only has area from x equals one to x equals three.

So, it does amount to finding the area of this larger trapezoid. Let me highlight this trapezoid in red. We want to find the area of this trapezoid right over here, and that should be equal to 1 because all density curves have an area of 1 under the total curve.

Let's first verify that. There are a couple of ways to think about it. We could split it up into two shapes, or you could just use the formula for the area of a trapezoid. In fact, let's use the formula for the area of a trapezoid.

The formula for the area of a trapezoid is you would take the average of this length. We do that in another color. This length and this length, let's see, this is 0.25. 0.25 plus this height, 0.75, divided by 2. So that's the average of those two sides times the base.

The average of this length and this length, let's see, this is 0.25 plus 0.75, which is equal to 1, so the area under the entire density curve is 1, which needs to be true for this to be a density curve.

Now, let's think about what percentage of that area is represented in blue right over here. Well, we could do the same thing. We could say, "All right, this is a trapezoid." We want to take the average of this side and this side and multiply it times the base.

This side is 0.5 high, 0.5 plus 0.75, 0.75 high, and we're going to take the average of that divided by 2 times the base. The base going from 2 to 3 is only equal to 1. So, times 1, and this is going to give us 1.25 over 2.

What is that going to be equal to? Well, that would be the same thing as zero point... What, let's see, 0.625. Did I do that right? Yep. If I multiply 2 times this, I would get 1.25.

So, the percent of the area under the density curve where x is more than 2—this is the decimal expression of it—but if we wanted to write it as a percent, it would be 62.5.

Let's do another example. Consider the density curve below. Alright, we have another one of these somewhat angular density curves. Find the percent of the area under the density curve where x is more than three.

So, we're talking about... see, this is where x is equal to three. x is more than three; we’re talking about this entire area right over here. Well, this is actually somewhat straightforward because if we're saying the area where x is more than three, that's the entire area under the density curve.

The entire area under any density curve needs to be equal to one. Or you could say, "Find the percent of the area under the density curve." Well, the whole density curve is where x is more than three, so one hundred percent. We don't even have to go through the trouble of trying to directly calculate the area.

More Articles

View All
Mohnish Pabrai: How to Find and Analyze an Investment (2021)
I put about 10% of the fund’s assets into Frontline, and in a few months, shipping rates started to go up. It went up to like $10 or $11 a share. I had a very nice gain in a relatively short period of time, and I exited Frontline, patted myself on the bac…
Using units to solve problems: Road trip | Working with units | Algebra I | Khan Academy
We’re told that Ricky is going on a road trip that is a hundred kilometers long. His average speed is 70 kilometers per hour. At that speed, he can drive five kilometers for every liter of fuel that he uses. Fuel costs 0.60 dollars per liter, so equivalen…
Independence movements in the 20th Century | World History | Khan Academy
As we’ve seen in other videos, this is a map of the European possessions, especially the Western European possessions in much of the world. As we enter into the 20th century, before World War I, you see significant possessions by the French, not just in A…
Liters to milliliters examples
What we’re going to do in this video is some examples converting between liters and milliliters. Just as a reminder, “mili” means 1/1000th, so a milliliter is 1/1000th of a liter. Another way to think about it: one liter is one thousand milliliters. So, …
Scaling functions vertically: examples | Transformations of functions | Algebra 2 | Khan Academy
So we’re told this is the graph of function f right over here, and then they tell us that function g is defined as g of x is equal to one third f of x. What is the graph of g? If we were doing this on Khan Academy, this is a screenshot from our mobile app…
Ways to rewrite a percentage
[Instructor] We’re asked which of the following options have the same value as 2% of 90? Pause this video, and see if you can figure it out. And as a reminder, they say, pick two answers. All right, now let’s work through this together. So, before I eve…