yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Divergence notation


4m read
·Nov 11, 2024

So I've said that if you have a vector field, a two-dimensional vector field with component functions P and Q, that the divergence of this guy, the divergence of V, which is a scalar-valued function of X and Y, is by definition the partial derivative of P with respect to X plus the partial derivative of Q with respect to Y.

And there's actually another notation for divergence that's kind of helpful for remembering the formula. What it is, is you take this nabla symbol, that upside-down triangle that we also use for the gradient, and imagine taking the dot product between that and your vector-valued function.

As we did with the gradient, the loose mnemonic you have for this upside-down triangle is you think of it as a vector full of partial differential operators. And that sounds fancy, but all it means is you take this partial partial X, a thing that wants to take in a function and take its partial derivative, and that's its first component.

The second component is this partial partial Y, a thing that wants to take in a function and take its partial derivative with respect to Y. Loosely, this isn't really a vector; these aren't numbers or functions or things like that. But it's something you can write down, and it'll be kind of helpful symbolically.

You imagine taking the dot product with that and, you know, V, who has components, these scalar-valued functions P of XY and Q of XY. When you imagine doing this dot product and you're kind of lining up terms, the first one multiplied by the second—right, quote-unquote multiplied—because in this case, when I say this first component multiplied by P, I really mean you're taking that partial derivative operator, partial partial X, and evaluating it at P.

That's kind of what multiplication looks like in this case. So you take that, and as per the dot product, you then add what happens if you take this partial operator, this partial partial Y, and quote-unquote multiply it with Q, which in the case of an operator means you kind of give it the function Q, and it's going to take its partial derivative.

So we see we get the same thing over here; it's the same formula that we have. It's just kind of a nice little—you could think of it as a mnemonic device for remembering what the divergence is. But another nice thing is this can apply to higher-dimensional functions as well.

Right, if we have something that's, let's see, a vector-valued function and it's going to be a three-dimensional vector field, so it's got X, Y, and Z as its inputs, and its output then also has to have three dimensions. So it might be like P, Q, and R, and all of these are functions of X, Y.

So that's P of X, Y, Q—oh no, no—X, Y, and Z, right? So P of X, Y, Z; Q of X, Y, Z; and then R of X, Y, Z. I haven't talked about three-dimensional divergence, but if you take this and then you imagine doing your nabla dotted with the vector-valued function, it can still make sense.

In this case, that nabla you're thinking of as having three different components, right? It's going to be, on the one hand, this partial partial X—I should say partial X there—partial X. The second component is partial partial Y, and the last component is partial partial Z.

The ordering of these variables here, X, Y, and Z, is just whatever I have here. So even if they didn't have the names X, Y, Z, you kind of put them in the same order that they show up in your function.

When you imagine taking the dot product between this and your P as a function, Q as a function, and R as a function—vector-valued, vector-valued output—what you'd get, and I'll write it over here, is you take that partial partial X and kind of multiply it with P, which means you're really evaluating at P, so partial X here.

Then you add partial partial Y, and you're evaluating at Q because you're kind of imagining multiplying these second components. And you'll add what happens when you multiply by these third components, where that's partial partial Z by that last component.

You know, since I haven't talked about three-dimensional vector fields or three-dimensional divergence, this last term—maybe it's not a given that you'd have as strong an intuition for why this shows up in divergence as the other two, but it's actually quite similar.

You're thinking about changes to the Z component of a vector as the value Z of the input as you're kind of moving up and down in that direction changes. But this pattern will go for even higher dimensions that we can't visualize—four, five, a hundred, whatever you want.

That's what makes this notation here quite nice, is that it encapsulates that and gives a really compact way of describing this formula that has a simple pattern to it, but would otherwise kind of get out of hand.

See you next video.

More Articles

View All
Highest Resolution Machu Picchu Picture Ever Taken- Smarter Every Day 66
Hey, it’s me Destin. Welcome back to Smarter Every Day! So today, we’re in Peru. It’s pretty awesome. We’ve assembled a team of people, and we’re going to capture Machu Picchu in the highest resolution photo that’s ever been made of it. We’re gonna let yo…
Using matrices to manipulate data: Game show | Matrices | Precalculus | Khan Academy
We’re told in the beginning of each episode of a certain game show. Each contestant picks a certain door out of three doors. Then the game show host randomly picks one of the two prize bundles. After each round, each contestant receives a prize based on t…
Example of one sides unbounded limits
We’re asked to select the correct description. It looks like all the descriptions deal with what is the limit of f of x as we approach six from either the right-hand side or from the left-hand side. So let’s think about that. First, let me just do the le…
Bill Gates: COVID-19 has Set Back Global Health for Years | National Geographic
[Music] Bill, it’s so nice to talk with you about this goalkeeper’s report. But I was really struck how different it was from the last time we talked about goalkeepers in 2018, and that was so much of a more positive report. You know, all of the indicato…
How to get your Real Estate license and become a Real Estate Agent
What’s up you guys? It’s Graham here. So if you didn’t already know, how I make most of my money is by working as a real estate agent, and I do that full-time. I’ve been doing this since 2008, and one of the most common questions I get is, “Graham, how do…
15 Life Changing Biographies of Successful People
Here’s a fact that will change your perspective about books forever: if they wrote it to make money, don’t read it. If they wrote it to tell you a story that will inspire and motivate you, it’s worth reading a thousand times. And this is what the followin…