yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing problems involving definite integrals | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

The population of a town grows at a rate of ( r(t) = 300 e^{0.3t} ) people per year, where ( t ) is time in years. At time ( t = 2 ), the town's population is 1200 people. What is the town's population at ( t = 7 )?

Which expression can we use to solve the problem?

So they don't want us to actually answer the question; they just want us to set up the expression using some symbols from calculus. So why don't you pause this video and try to think about it?

So let's just remind us what they've given us. They’ve given us the rate function right over here, and so if you want to find a change in population from one time to another time, what you could do is you could take the integral of the rate function from the starting time ( t = 2 ) years to ( t = 7 ) years.

So we're going to take the integral of the rate function, and what this is going to tell us, this is going to tell us the change in population from time 2 to time 7.

So this is, you could say, let me just write this: this is the change (I'll use ( \Delta ) for change) or I'll just, let me just write it out—change in population.

But they don’t want us to—they—we don’t—they’re not asking us for the change in population; they want us to know what is the town's population at ( t = 7 ).

So what you would want is, you would want what your population is at ( t = 2 ) plus the change in population from 2 to 7 to get you your population at 7.

So they tell us the population at time ( t = 2 ); the town's population is 1200 people. So if you want the population at ( t = 7 ), it’s going to be 1200 plus whatever the change in population is.

If you take the integral of the rate function, you are—and this is the rate of population—this integral is going to give you the change in population from time ( t = 2 ) to ( t = 7 ).

So we can see clearly that is choice D right over here. These other choices we could look at them really quick.

Choice B is just the change in population; that's if assuming that this is—and this is actually increasing—so this would tell us how much does the population increase from ( t ) to from ( t = 2 ) to ( t = 7 ).

So that's not what we want. We want what the actual population is. This is how much the population increases from time 0 to time 7.

Now you might say, well wouldn’t that be the town's population? Well, that would be the town's population if they had no people at time 0, but you can’t assume that. Maybe the town got settled by 10 people or by a thousand people or who knows whatever else. So right over there.

And this is taking the derivative of the rate function, which is—it’s actually a little hard to think about what is this. This is the rate of change of the rate at time 7 minus the rate of change of the rate at time 2. So I would rule that one out as well.

Let’s do one more of these.

So here we have the depth of water in a tank is changing at a rate of ( r(t) = 0.3t ) centimeters per minute, where ( t ) is the time in minutes. At time ( t = 0 ), the depth of the water is 35 centimeters. What is the change in the water's depth during the fourth minute?

So let’s pause the video again and see if you can figure this out again or figure out what expression can we use to solve the problem—the problem being what is the change in the water's depth during the fourth minute?

All right, so we’ve just talked about if you’re trying to find the change in a value, you could take the integral of the rate function over the appropriate time.

So we’re talking about during the fourth minute, so we definitely want to take the integral of the rate function, and we just have to think about the bounds.

And all the choices here are taking the integral of the rate function, so really the interesting part is during the fourth minute.

So let me just draw a little number line here, and we can think about what the fourth minute looks like. Or actually, let me just draw the whole thing.

So let’s say this is ( r(t) ) right over there. You could say ( y = r(t) ), and this is ( t ).

And let’s see the first minute goes from 0 to 1, second minute goes from 1 to 2, third minute goes from 2 to 3, fourth minute goes from 3 to 4.

The rate function actually looks just like a straight-up linear rate function, looks something like this.

And so what is the fourth minute? Well, the first minute is this one, second, third, fourth. The fourth minute is going from minute 3 to minute 4.

So what we want to do is the expression that gives us this area right over here under the rate curve—well, the lower bound is going to be 3 and our upper bound is going to be 4.

And so there you have it. It is this first choice. You might have been tempted here if you got a little bit confused—hey, maybe the fourth minute is after we’ve crossed ( t = 4 ), but no, that would be the fifth minute.

This would tell us our change over the first four minutes, not just during the fourth minute.

And then this—well, this is just going to be zero if you’re taking—this is what is the change in the value from 3 to 3? Well, it didn’t change at all in that—in—because it’s essentially at an instant, there's no time that passes from 3 to 3, so you could rule all of these out.

More Articles

View All
Finding equivalent ratios in similar triangles | Grade 8 (TX) | Khan Academy
We’re told Triangle FGH is similar to Triangle KLM. Which proportion could we use to find the length of segment KL? So segment KL is this one right over here, and they put an X there for the length of segment KL. Pause this video and see if you can figure…
Artificial Female Reproductive Tract Opens New Health Frontiers | National Geographic
[Music] Avatar being a virtual representation of a human being, and in this case, it’s a biological representation of the female reproductive tract. So, we call it Eva Tarr. The system that we’ve invented together with Draper laboratories is a series of …
How To Get Hired By Elon Musk With NO College Degree
I started programming like as a way to not be homeless. It was between programming, video editing, and psychology. Just went programming ‘cause it’s easier to learn online. How do you learn online? Harvard puts their computer science courses online. You …
Why Warren Buffett is Keeping $144B out of the Stock Market
How many times on the channel have I regarded Warren Buffett as the best stock market investor to have ever lived? I’ve said that a lot, and he is. He took over Berkshire Hathaway in 1965, and since that time, his regime of acquisitions and investments ha…
An Affordable 3D-Printed Arm
I’m actually gonna use my arm so I can high-five so many people, 106. You’re gonna high-five 106 people? Yeah. Aren’t you gonna get tired? No, because my robo-arm’s going to do all the work. Alex was born without a fully formed arm, a condition that…
Why Are Astronauts Weightless?
[Applause] [Music] Have you wondered what it would be like to be an astronaut floating around in the space station? But why are the astronauts floating? I’m here at the PowerHouse Museum in Sydney to find out if anyone knows the answer. Why are they floa…