yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Intuition for why independence matters for variance of sum | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

So in previous videos, we talked about the claim that if I have two random variables, X and Y, that are independent, then the variance of the sum of those two random variables, or the difference of those two random variables, is going to be equal to the sum of the variances.

So, that if you have independent random variables, your variation is going to increase when you take a sum or a difference. We built a little bit of intuition there. What I want to talk about in this video is really about building even more intuition and getting a gut feeling for why this independence is important for making this claim.

To get that intuition, let's look at two random variables that are definitely random variables but that are definitely not independent. So, let's say, let's let X be equal to the number of hours that the next person you meet—I'll say random person—random person slept yesterday. And let's say that Y is equal to the number of hours that same person was awake yesterday.

Appreciate why these are not independent random variables. One of them is going to completely determine the other. If I slept eight hours yesterday, then I'm going to have been awake for 16 hours. If I slept for 16 hours, then I would have been awake for eight hours.

We know that X plus Y, even though they're random variables and there could be variation in X and there could be variation in Y, for any given person, remember these are still based on that same person, X plus Y is always going to be equal to 24 hours.

So these are not independent. Not independent! If you're given one of the variables, it would completely determine what the other variable is. The probability of getting a certain value for one variable is going to be very different given what value you got for the other variable. So they're not independent at all.

In this situation, if someone said, let's just say for the sake of argument that the variance of X, the variance of X is equal to, I don't know, let's say it's equal to 4 and the units for variance would be squared hours. So, 4 hours squared. We could say that the standard deviation for X in this case would be 2 hours.

And let's say that the variance, or let's say the standard deviation of Y is also equal to 2 hours. And let's say that the variance of Y, the variance of Y, well, it would be the square of the standard deviation. So it would be 4 hours, 4 hours squared would be our units.

So, if we just tried to blindly say, "Oh, I'm just going to apply this little expression, this claim we had without thinking about the independence," we would try to say, "Well then the variance of X plus Y, the variance of X plus Y must be equal to the sum of their variances."

So it would be 4 plus 4, so is it equal to 8 hours squared? Well, that doesn't make any sense because we know that a random variable that is equal to X plus Y—that this is always going to be 24 hours. In fact, it's not going to have any variation; X plus Y is always going to be 24 hours.

So for these two random variables, because they are so connected, they are not independent at all. This is actually going to be zero. There is zero variance here. X plus Y is always going to be 24, at least on Earth, where we have a 24-hour day.

I guess if someone lived on another planet or something then it could be slightly different, and we're assuming that we have an exactly 24-hour day on Earth.

So this is to give you a gut sense of why independence matters for making this claim, and if you have things that are not independent, it gives you a good sense for why this claim doesn't hold up as much.

More Articles

View All
Meet The Real Estate Investor who RETIRED at 25 Years Old (Self Made)
To get there, there’s only three things you can do: you can spend less, you can earn more, you can maximize your returns. And in that word, like spending less, yeah, is this way more impactful because it allows you to save more, yeah, and it requires you …
Devil's Club Harvest | Port Protection
On smokes, we’re cutting through here. Timby Porter is scouring the woods looking for devil’s club, a plant with pain-killing properties. I hear noises over there, but a sound in the bush ahead has brought her hunt to an anxious halt. “Smokey, you hear b…
The Harp Seal's Race Against Time - Ep. 5 | Wildlife: The Big Freeze
[Bertie] Only minutes old, this harp seal pup is quick to fall in love with its icy home sweet home. The ice melts. In just 10 days’ time, mom will leave her behind and never look back. The countdown begins. (baby seal cooing) 10, put on at least four pou…
TIL: How to Transform Mars into Our Second Home | Today I Learned
Hey there, would you like to live on Mars? That’s a garbage idea! If you try to go out there right now, you would simultaneously freeze and choke to death. I’m Brendan Mullin, an emerging explorer with National Geographic and an astrobiologist. I’m here …
It's all about talking to your users.
Most people in the world have the idea on how new startups are formed completely wrong. They think ideas of new products is something the founders come up with on a lazy Sunday or a late night coding session. You probably know it doesn’t work this way. Th…
Dividing a decimal by a whole number example
Let’s see if we can compute what 1.86 divided by 2 is. And like always, pause this video and have a go at it. I’ll give you a hint: see if you can think about 1.86 as a certain number of hundredths, and then divide that by 2. All right, now let’s work th…