yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fourier Series introduction


4m read
·Nov 11, 2024

So I have the graph of ( y ) is equal to ( F(T) ). Here, our horizontal axis is in terms of time, in terms of seconds. This type of function is often described as a square wave, and we see that it is a periodic function that completes one cycle every ( 2\pi ) seconds.

So we could say its period is equal to ( 2\pi ). If we want to put the units, we could say ( 2\pi ) seconds per cycle. We could write it like that; we could also just write ( s ) for seconds. Its frequency is going to be one over that, so we could write its frequency. Its frequency is equal to ( \frac{1}{2\pi} ) cycles per second. It can also be described as Hertz.

What we're going to explore in this video is: can we take a periodic function like this and represent it as an infinite sum of sines and cosines of different periods or different frequencies? So to write that out a little bit more clearly: can we take our ( F(T) ) and write it as the sum of sines and cosines?

So can we write it? So it's going to be some, let's say, baseline constant that'll shift it up or down. As we'll see, that's going to be based on the average value of the function over one period, so ( a_0 ). And then let's start adding some periodic functions here.

So let's take ( a_1 \cos(T) ). Now, why am I starting with ( \cos(T) )? And I could also add ( b_1 \sin(T) ). Why am I starting with ( \cos(T) ) and ( \sin(T) )? Well, if our original function has a period of ( 2\pi ), and I just set up this one, so it does have a period of ( 2\pi ), well, it would make sense that it would involve some functions that have periods of ( 2\pi ).

These weights will tell us how much they involve it. If ( A_1 ) is much larger than ( B_1 ), well, that says, "Okay, this has a lot more of ( \cos(T) ) in it than it has of ( \sin(T) ) in it." That by itself isn't going to describe this function because we know what this would look like. This would look like a very clean sinusoid, not like a square wave.

So what we're going to do is we're going to add sinusoids of frequencies that are multiples of these frequencies. So let's add ( a_2 \cos(2T) ). This has a frequency of ( \frac{1}{2\pi} ); this has twice the frequency, this has a frequency of ( \frac{1}{\pi} ), and then ( a_3 \sin(3T) ).

I'm going to keep going on and on and on forever, and I'm going to do the same thing with the sines. So let's add ( b_2 \sin(2T) ) plus ( b_3 \sin(3T) ). You might be saying, "Well, okay, this seems like a fun little mathematical exercise, but why do folks even do this?"

Well, this was first explored, and they’re named series like this; infinite series where you represent something by essentially weighted sines and cosines. This was explored originally by Fourier, and they're called Fourier series. They were interesting to him in the study of differential equations because a lot of differential equations can be easy to solve when you involve sines and cosines but not as obvious to solve when you have more general functions like maybe a square wave here.

But if you could represent that square wave as sums of sines and cosines, then all of a sudden you might be able to find more general solutions to your differential equations. Another really interesting thing about this—and this is really the foundation of signal processing—is that it’s heavily used in electrical engineering.

You can view these coefficients as weights on these cosines and sines, but another way to think about it is it tells you how much of different frequencies this function contains. So, for example, if ( A_1 ) is much bigger than ( A_2 ), then that tells you that the function contains a lot more of the ( \frac{1}{2\pi} ) Hertz frequency than the ( \frac{1}{\pi} ) frequency. Or maybe ( A_2 ) or maybe ( A_3 ) is bigger than ( A_1 ) or ( A_2 ).

So you can start to say, "Hey, this helps us think of a function not just in terms of the time domain, which ( F(T) ) does, but it can start bringing us to saying, 'Well, how much do we have of each frequency?'" And as we'll see with Fourier series and eventually Fourier transforms, that's going to get us into the frequency domain where we can start doing some signal processing.

So we're going to explore all of that in future videos. In order to understand how we can actually find these coefficients, we're going to review a little bit of our trigonometry, especially integrating trig functions. Then we're going to solve for these, and we're going to see how good we can approximate our function ( F ).

More Articles

View All
Hindu scripture overview | World History | Khan Academy
As we’ve mentioned in previous videos, Hinduism is a very diverse religion with many different practices and even different beliefs. But there is a core centered around scripture, and the most important of these texts are the Vedas. Now, the word Veda lit…
How to Retire Early from Real Estate Investing
What’s up you guys, it’s Graham here. So, this is a really fun video for me to make because we’re gonna be talking about my favorite topics of all time in one video. That’s right! We got real estate investing, passive income, financial independence, retir…
How Not to Get Eaten by a Polar Bear | Expedition Raw
Ber is going to show us how to put the trip wire, which is supposed to protect the camp from polar bears. Nowadays, you see more polar bears on the glacier because of climate change. There is less sea ice, and they use the glaciers to transport themselves…
Exponential model word problem: medication dissolve | High School Math | Khan Academy
Carlos has taken an initial dose of a prescription medication. The relationship between the elapsed time T, in hours, since he took the first dose, and the amount of medication m, in milligrams, in his bloodstream is modeled by the following function: In…
Ray Dalio and Elliot Choy on How to Find Your Passions
I think some people, uh, just maybe earlier in their career or earlier in life, they haven’t, they don’t know necessarily what they like; maybe they haven’t tried enough things or whatever it may be, and they’re still kind of searching for that passion. …
How Large Can a Bacteria get? Life & Size 3
In and out, in and out, staying alive is about doing things this very second. Your cells are combusting glucose molecules with oxygen to make energy available, which keeps you alive for another precious moment. To get the oxygen to your cells, you’re brea…