yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fourier Series introduction


4m read
·Nov 11, 2024

So I have the graph of ( y ) is equal to ( F(T) ). Here, our horizontal axis is in terms of time, in terms of seconds. This type of function is often described as a square wave, and we see that it is a periodic function that completes one cycle every ( 2\pi ) seconds.

So we could say its period is equal to ( 2\pi ). If we want to put the units, we could say ( 2\pi ) seconds per cycle. We could write it like that; we could also just write ( s ) for seconds. Its frequency is going to be one over that, so we could write its frequency. Its frequency is equal to ( \frac{1}{2\pi} ) cycles per second. It can also be described as Hertz.

What we're going to explore in this video is: can we take a periodic function like this and represent it as an infinite sum of sines and cosines of different periods or different frequencies? So to write that out a little bit more clearly: can we take our ( F(T) ) and write it as the sum of sines and cosines?

So can we write it? So it's going to be some, let's say, baseline constant that'll shift it up or down. As we'll see, that's going to be based on the average value of the function over one period, so ( a_0 ). And then let's start adding some periodic functions here.

So let's take ( a_1 \cos(T) ). Now, why am I starting with ( \cos(T) )? And I could also add ( b_1 \sin(T) ). Why am I starting with ( \cos(T) ) and ( \sin(T) )? Well, if our original function has a period of ( 2\pi ), and I just set up this one, so it does have a period of ( 2\pi ), well, it would make sense that it would involve some functions that have periods of ( 2\pi ).

These weights will tell us how much they involve it. If ( A_1 ) is much larger than ( B_1 ), well, that says, "Okay, this has a lot more of ( \cos(T) ) in it than it has of ( \sin(T) ) in it." That by itself isn't going to describe this function because we know what this would look like. This would look like a very clean sinusoid, not like a square wave.

So what we're going to do is we're going to add sinusoids of frequencies that are multiples of these frequencies. So let's add ( a_2 \cos(2T) ). This has a frequency of ( \frac{1}{2\pi} ); this has twice the frequency, this has a frequency of ( \frac{1}{\pi} ), and then ( a_3 \sin(3T) ).

I'm going to keep going on and on and on forever, and I'm going to do the same thing with the sines. So let's add ( b_2 \sin(2T) ) plus ( b_3 \sin(3T) ). You might be saying, "Well, okay, this seems like a fun little mathematical exercise, but why do folks even do this?"

Well, this was first explored, and they’re named series like this; infinite series where you represent something by essentially weighted sines and cosines. This was explored originally by Fourier, and they're called Fourier series. They were interesting to him in the study of differential equations because a lot of differential equations can be easy to solve when you involve sines and cosines but not as obvious to solve when you have more general functions like maybe a square wave here.

But if you could represent that square wave as sums of sines and cosines, then all of a sudden you might be able to find more general solutions to your differential equations. Another really interesting thing about this—and this is really the foundation of signal processing—is that it’s heavily used in electrical engineering.

You can view these coefficients as weights on these cosines and sines, but another way to think about it is it tells you how much of different frequencies this function contains. So, for example, if ( A_1 ) is much bigger than ( A_2 ), then that tells you that the function contains a lot more of the ( \frac{1}{2\pi} ) Hertz frequency than the ( \frac{1}{\pi} ) frequency. Or maybe ( A_2 ) or maybe ( A_3 ) is bigger than ( A_1 ) or ( A_2 ).

So you can start to say, "Hey, this helps us think of a function not just in terms of the time domain, which ( F(T) ) does, but it can start bringing us to saying, 'Well, how much do we have of each frequency?'" And as we'll see with Fourier series and eventually Fourier transforms, that's going to get us into the frequency domain where we can start doing some signal processing.

So we're going to explore all of that in future videos. In order to understand how we can actually find these coefficients, we're going to review a little bit of our trigonometry, especially integrating trig functions. Then we're going to solve for these, and we're going to see how good we can approximate our function ( F ).

More Articles

View All
Chasing Wolverines With Help From Ultra-Runners | National Geographic
[Music] This place is right on the fringe of so many important carnivore species’ habitat. In February of 2014, a camera trap here that the Department of Wildlife Resources had set up captured a wolverine on camera. That was the first time that had happen…
Safari Live - Day 202 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon, ladies and gentlemen, and welcome again to another afternoon sunset safari with us here in June and the Sab…
Watch: Nearly 10,000 People Ice Fish for Charity | National Geographic
This is the world’s largest party on ice. We are the largest charitable fishing contest in the entire world. We have upwards of 10,000 people out here, and we’re all supporting local charities. The entire thing is volunteer-run. We have approximately 80 v…
How Were the Pyramids Built?
Okay, so we’re going for a ride around the pyramids. The Great Pyramid was the tallest man-made structure for nearly 4,000 years, only surpassed by a large margin by the Eiffel Tower in 1889, 147 m high. You are interested in climbing? Yeah, it’s climbing…
The Immune System Explained I – Bacteria Infection
Every second of your life, you are under attack. Billions of bacteria, viruses, and fungi are trying to make you their home, so our bodies have developed a super complex little army with guards, soldiers, intelligence, weapons factories, and communicators…
Writing standard equation of a circle | Mathematics II | High School Math | Khan Academy
[Voiceover] So we have a circle here and they specified some points for us. This little orangeish, or, I guess, maroonish-red point right over here is the center of the circle, and then this blue point is a point that happens to sit on the circle. And s…