yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Alternating series test | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's now expose ourselves to another test of convergence, and that's the alternating series test. I'll explain the alternating series test, and I'll apply it to an actual series while I do it to make the explanation of the alternating series test a little bit more concrete.

So let's say that I have some series, some infinite series. Let's say it goes from n equals k to infinity of ( a_n ). Let's say I can write it as, or I can rewrite ( a_n ). So, let's say ( a_n ) I can write so ( a_n ) is equal to ( (-1)^n b_n ) or ( a_n ) is equal to ( (-1)^{n+1} b_n ), where ( b_n ) is greater than or equal to 0 for all the n's we care about. So for all of these integer n's greater than or equal to k.

If all of these things are true and we know two more things, we know number one the limit as n approaches infinity of ( b_n ) is equal to zero and number two ( b_n ) is a decreasing sequence. That lets us know that the original infinite series, the original infinite series is going to converge.

So this might seem a little bit abstract right now. Let's actually use this with an actual series to make it a little bit more concrete. So, let's say that I had the series, let's say I had the series from n equals 1 to infinity of ( \frac{(-1)^n}{n} ). We could write it out just to make this series a little bit more concrete.

When n is equal to 1, this is going to be ( \frac{(-1)^1}{1} ), actually, let's just make this a little bit more interesting. Let's make this ( (-1)^{n+1} ). So when n is equal to 1, this is going to be ( \frac{(-1)^2}{1} ), which is going to be 1. And then when n is 2, it's going to be ( \frac{(-1)^3}{2} ), which is going to be negative one-half.

So it's minus one-half plus one-third minus one-fourth plus minus and it just keeps going on and on and on forever. Now, can we rewrite this ( a_n ) like this? Well, sure. The ( (-1)^{n+1} ) is actually explicitly called out. We can rewrite our ( a_n ).

So let me do that. So, ( a_n ), which is equal to ( \frac{(-1)^{n+1}}{n} ), this is clearly the same thing as ( (-1)^{n+1} \times \frac{1}{n} ), which we can then say this thing right over here could be our ( b_n ).

So, this right over here is our ( b_n ), and we can verify that our ( b_n ) is going to be greater than or equal to zero for all the n's we care about. So our ( b_n ) is equal to ( \frac{1}{n} ). Now clearly this is going to be greater than or equal to zero for any positive n.

Now, what's the limit as ( b_n ) approaches? What's the limit of ( b_n ) as n approaches infinity? The limit of, let me just write ( \frac{1}{n} ) as n approaches infinity is going to be equal to 0. So we satisfy the first constraint.

And then this is clearly a decreasing sequence. As n increases, the denominators are going to increase, and with a larger denominator, you're going to have a lower value. So we can also say ( \frac{1}{n} ) is a decreasing sequence for the n's that we care about.

So this is satisfied as well. And so based on that, this thing right over here is always greater than or equal to zero. The limit as ( \frac{1}{n} ) or ( b_n ) as n approaches infinity is going to be zero. It's a decreasing sequence. Therefore, we can say that our original series actually converges.

So, the series from n equals 1 to infinity of ( \frac{(-1)^{n+1}}{n} ), and that's kind of interesting because we've already seen that if all of these were positive, if all of these terms were positive we just have the harmonic series, and that one didn't converge, but this one did. Putting these negatives here do the trick.

And actually, we can prove this one over here converges using other techniques, and maybe if we have time actually, in particular, the limit comparison test. I'll just throw that out there in case you are curious.

So this is a pretty powerful tool. It looks a little bit about like that divergence test, but remember the divergence test is really only useful if you want to show something diverges. If the limit of your terms does not approach zero, then you say, okay, that thing is going to diverge.

This thing is useful because you can actually prove convergence. Now once again, if something does not pass the alternating series test, that does not necessarily mean that it diverges. It just means that you couldn't use the alternating series test to prove that it converges.

More Articles

View All
Schlieren Imaging in Color!
A few months ago, I made a video about Schlieren imaging. Now that’s a technique used to visualize tiny differences in air, either temperature, pressure, composition, so you can see things like the heat that comes off when you light a match. Now, in that…
Taxes and tax forms unit overview | Teacher Resources | Financial Literacy | Khan Academy
Hello teachers. In this unit, we’re going to cover taxes and tax forms. As I always say, a good place to start is to just go through the unit yourself to familiarize yourself with the content. This is a shorter than average unit; it only has three exercis…
Why your $1 is REALLY worth $5 (Real Estate Investing Mind Trick)
This is also why when you’re investing in real estate, how you should look at every one dollar is actually being worth five dollars. Because this is how much it’s actually truly worth. So this is something I catch myself doing all the time and I thought I…
Cortex Subtle T's & Hoodies! Annual Limited Drop!
For years I struggled to find the perfect t-shirt, sadly without success. Then, over at Cortex Incorporated, where we mostly make premium paper productivity products, we pondered: can we also produce the perfect shirt? Something everyday casual, but that…
Paul and the apostles Christianity | World History | Khan Academy
The central figure in Christianity is clearly Jesus, but it’s important to note that he does not establish the religion all by himself. In fact, at the time of his crucifixion and according to Christian beliefs—resurrection and ascension—the number of fol…
Oceans 101 | National Geographic
Oceans cover over 70 percent of the Earth’s surface. They not only serve as the planet’s largest habitat, but also help to regulate the global climate. The ocean is a continuous body of salt water that surrounds the continents. It is divided into four ma…