yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Alternating series test | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Let's now expose ourselves to another test of convergence, and that's the alternating series test. I'll explain the alternating series test, and I'll apply it to an actual series while I do it to make the explanation of the alternating series test a little bit more concrete.

So let's say that I have some series, some infinite series. Let's say it goes from n equals k to infinity of ( a_n ). Let's say I can write it as, or I can rewrite ( a_n ). So, let's say ( a_n ) I can write so ( a_n ) is equal to ( (-1)^n b_n ) or ( a_n ) is equal to ( (-1)^{n+1} b_n ), where ( b_n ) is greater than or equal to 0 for all the n's we care about. So for all of these integer n's greater than or equal to k.

If all of these things are true and we know two more things, we know number one the limit as n approaches infinity of ( b_n ) is equal to zero and number two ( b_n ) is a decreasing sequence. That lets us know that the original infinite series, the original infinite series is going to converge.

So this might seem a little bit abstract right now. Let's actually use this with an actual series to make it a little bit more concrete. So, let's say that I had the series, let's say I had the series from n equals 1 to infinity of ( \frac{(-1)^n}{n} ). We could write it out just to make this series a little bit more concrete.

When n is equal to 1, this is going to be ( \frac{(-1)^1}{1} ), actually, let's just make this a little bit more interesting. Let's make this ( (-1)^{n+1} ). So when n is equal to 1, this is going to be ( \frac{(-1)^2}{1} ), which is going to be 1. And then when n is 2, it's going to be ( \frac{(-1)^3}{2} ), which is going to be negative one-half.

So it's minus one-half plus one-third minus one-fourth plus minus and it just keeps going on and on and on forever. Now, can we rewrite this ( a_n ) like this? Well, sure. The ( (-1)^{n+1} ) is actually explicitly called out. We can rewrite our ( a_n ).

So let me do that. So, ( a_n ), which is equal to ( \frac{(-1)^{n+1}}{n} ), this is clearly the same thing as ( (-1)^{n+1} \times \frac{1}{n} ), which we can then say this thing right over here could be our ( b_n ).

So, this right over here is our ( b_n ), and we can verify that our ( b_n ) is going to be greater than or equal to zero for all the n's we care about. So our ( b_n ) is equal to ( \frac{1}{n} ). Now clearly this is going to be greater than or equal to zero for any positive n.

Now, what's the limit as ( b_n ) approaches? What's the limit of ( b_n ) as n approaches infinity? The limit of, let me just write ( \frac{1}{n} ) as n approaches infinity is going to be equal to 0. So we satisfy the first constraint.

And then this is clearly a decreasing sequence. As n increases, the denominators are going to increase, and with a larger denominator, you're going to have a lower value. So we can also say ( \frac{1}{n} ) is a decreasing sequence for the n's that we care about.

So this is satisfied as well. And so based on that, this thing right over here is always greater than or equal to zero. The limit as ( \frac{1}{n} ) or ( b_n ) as n approaches infinity is going to be zero. It's a decreasing sequence. Therefore, we can say that our original series actually converges.

So, the series from n equals 1 to infinity of ( \frac{(-1)^{n+1}}{n} ), and that's kind of interesting because we've already seen that if all of these were positive, if all of these terms were positive we just have the harmonic series, and that one didn't converge, but this one did. Putting these negatives here do the trick.

And actually, we can prove this one over here converges using other techniques, and maybe if we have time actually, in particular, the limit comparison test. I'll just throw that out there in case you are curious.

So this is a pretty powerful tool. It looks a little bit about like that divergence test, but remember the divergence test is really only useful if you want to show something diverges. If the limit of your terms does not approach zero, then you say, okay, that thing is going to diverge.

This thing is useful because you can actually prove convergence. Now once again, if something does not pass the alternating series test, that does not necessarily mean that it diverges. It just means that you couldn't use the alternating series test to prove that it converges.

More Articles

View All
What's wrong with our food system - Birke Baehr
[Music] [Music] [Applause] [Music] Hello, my name is Burke Bear and I’m 11 years old. I came here today to talk about what’s wrong with our food system. First of all, I would like to say that I’m really amazed at how easily kids are led to believe all th…
Sources of loans/credit | Loans and debt | Financial Literacy | Khan Academy
So let’s talk a little bit about credit and lending. When I talk about credit, I’m literally just talking about someone’s willingness to lend you money or to actually lend you money. You’ve heard of a credit card; when you buy something with a credit card…
Why I Cancelled Robinhood
What’s up, Graham? It’s guys here. So, how would you like to double your money by, uh, this time tomorrow? Well, if that’s the case, ignore Warren Buffett, throw all the conventional investing wisdom out the window, and instead look no further than Reddit…
Common percentages
[Instructor] What I would like you to do is pause this video and see if you can calculate each of these percentages, and ideally do it in your head. All right, now let’s do it together. Now I said, how are you going to do it in your head? You might be t…
Benedict Cumberbatch solo rappels down a cliff | Running Wild with Bear Grylls
Okay, time is of the essence now, so you’ve got to get that and yourself safely down to me. I’m at the base of the cliff, so use those improvised talents. Remember that Italian hitch, lower it down, and then lower yourself. Okay, copy that. It’s a big ar…
250,000 DOMINOES! - The American Domino Record - Smarter Every Day 178
DESTIN>> That’s right! You stand on the right. Hey, it’s me, Destin. Welcome back to Smarter Every Day. I’m teaching my kids that you’re supposed to stand on the right. Stand on the right. He’s standing… she’s there… you go. All right, we’re in Detr…