yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits of composite functions: external limit doesn't exist | AP Calculus | Khan Academy


2m read
·Nov 10, 2024

So, over here I have two functions that have been visually or graphically defined. On the left here, I have the graph of g of x, and on the right here, I have the graph of h of x. What I want to do is figure out what is the limit of g of h of x as x approaches one. Pause this video and see if you can figure that out.

Alright, now let's do this together. Now, the first thing that you might try to say is, "Alright, let's just figure out first the limit as x approaches 1 of h of x." When you look at that, what is that going to be? Well, as we approach 1 from the left, it looks like h of x is approaching 2, and as we approach from the right, it looks like h of x is approaching 2. So, it looks like this is just going to be 2.

Then we say, "Okay, well maybe we could then just input that into g." So, what is g of 2? Well, g of 2 is 0, but the limit doesn't seem defined. It looks like when we approach 2 from the right, we're approaching 0, and when we approach 2 from the left, we're approaching negative 2. So, maybe this limit doesn't exist, but if you're thinking that, we haven't fully thought through it.

Because what we could do is think about this limit in terms of both left-handed and right-handed limits. So, let's think of it this way. First, let's think about what is the limit as x approaches 1 from the left-hand side of g of h of x.

Alright, when you think about it this way, if we're approaching 1 from the left, right over here we see that we are approaching 2 from the left, I guess you could say, or we're approaching 2 from below. The thing that we are inputting into g of x is approaching 2 from below. So, if you approach 2 from below, right over here, what is g approaching? It looks like g is approaching negative 2. So this looks like it is going to be equal to negative 2, at least this left-handed limit.

Now let's do a right-handed limit. What is the limit as x approaches 1 from the right hand of g of h of x? Well, we can do the same exercise. As we approach one from the right, it looks like h is approaching 2 from below, from values less than 2. So, if we are approaching 2 from below—because remember, whatever h is outputting is the input into g—if the thing that we're inputting into g is approaching 2 from below, that means that g, once again, is going to be approaching negative 2.

So this is a really, really, really interesting case where the limit of g as x approaches 2 does not exist. But because on h of x, when we approach from both the left and the right-hand side, h is approaching 2 from below, we just have to think about the left-handed limit as we approach 2 from below, or from the left, on g.

Because in both situations we are approaching negative 2. And so that is going to be our limit. When the left-handed and the right-hand limit are the same, that is going to be your limit. It is equal to negative 2.

More Articles

View All
Confidence intervals and margin of error | AP Statistics | Khan Academy
It is election season, and there is a runoff between Candidate A versus Candidate B. We are pollsters, and we’re interested in figuring out, well, what’s the likelihood that Candidate A wins this election? Well, ideally, we would go to the entire populati…
Photos Reveal the Changing Face of Saudi Arabia’s Women | Exposure
[Music] I’m always surprised when I’m in Saudi Arabia because I go there with a sort of sense of dread of how difficult it will be to photograph and how impenetrable the place is. And then I find myself there and having fun. The women in Saudi Arabia are…
Jessica Livingston Introduces Startup School SV 2014
Good morning! Hello everyone, welcome! I’m Jessica Livingston with Y Combinator. We’re going to get started now, and today’s a really special [Applause] day. Today is the 10th Startup School we’ve ever done. It’s pretty amazing to think we’ve been doing t…
Khan Academy Ed Talks with Begoña Vila, PhD - Thursday October 13
Hello and welcome to Ed Talks with Khan Academy. I’m Kristen Deserva, the Chief Learning Officer at Khan Academy, and today I’m excited to welcome Dr. Begonia Villa, who is an astrophysicist and the lead systems engineer for two of the instruments on the …
Khan Academy Ed Talks featuring Elisa Villanueva Beard - Wednesday, December 9
Hi everyone! Sal Khan here from Khan Academy. Welcome to Ed Talks on Khan Academy. I know what you’re thinking: What are these Ed Talks? Well, this is kind of a subset of the Homeroom with Sal conversations that are more focused on education and are from …
Explorers See Greenland's Glaciers Like Never Before | National Geographic
[Music] Lots of people who have tried before us had failed, and all of their aircraft are scattered across the ice cap. You ready? Oh yeah! When thinking about flying a tiny helicopter across the North Atlantic, the answer is no, way too dangerous, ab…