yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Limits of composite functions: external limit doesn't exist | AP Calculus | Khan Academy


2m read
·Nov 10, 2024

So, over here I have two functions that have been visually or graphically defined. On the left here, I have the graph of g of x, and on the right here, I have the graph of h of x. What I want to do is figure out what is the limit of g of h of x as x approaches one. Pause this video and see if you can figure that out.

Alright, now let's do this together. Now, the first thing that you might try to say is, "Alright, let's just figure out first the limit as x approaches 1 of h of x." When you look at that, what is that going to be? Well, as we approach 1 from the left, it looks like h of x is approaching 2, and as we approach from the right, it looks like h of x is approaching 2. So, it looks like this is just going to be 2.

Then we say, "Okay, well maybe we could then just input that into g." So, what is g of 2? Well, g of 2 is 0, but the limit doesn't seem defined. It looks like when we approach 2 from the right, we're approaching 0, and when we approach 2 from the left, we're approaching negative 2. So, maybe this limit doesn't exist, but if you're thinking that, we haven't fully thought through it.

Because what we could do is think about this limit in terms of both left-handed and right-handed limits. So, let's think of it this way. First, let's think about what is the limit as x approaches 1 from the left-hand side of g of h of x.

Alright, when you think about it this way, if we're approaching 1 from the left, right over here we see that we are approaching 2 from the left, I guess you could say, or we're approaching 2 from below. The thing that we are inputting into g of x is approaching 2 from below. So, if you approach 2 from below, right over here, what is g approaching? It looks like g is approaching negative 2. So this looks like it is going to be equal to negative 2, at least this left-handed limit.

Now let's do a right-handed limit. What is the limit as x approaches 1 from the right hand of g of h of x? Well, we can do the same exercise. As we approach one from the right, it looks like h is approaching 2 from below, from values less than 2. So, if we are approaching 2 from below—because remember, whatever h is outputting is the input into g—if the thing that we're inputting into g is approaching 2 from below, that means that g, once again, is going to be approaching negative 2.

So this is a really, really, really interesting case where the limit of g as x approaches 2 does not exist. But because on h of x, when we approach from both the left and the right-hand side, h is approaching 2 from below, we just have to think about the left-handed limit as we approach 2 from below, or from the left, on g.

Because in both situations we are approaching negative 2. And so that is going to be our limit. When the left-handed and the right-hand limit are the same, that is going to be your limit. It is equal to negative 2.

More Articles

View All
Olympic Training During a Pandemic | Podcast | Overheard at National Geographic
High jump is a part of me. This is Priscilla Frederick Loomis. She’s a track and field athlete, a high jumper, and she’s training for the 2021 Olympic Games. I look at the timer; 59 seconds remain. I fix my hair and roll back my shoulders. I look at the …
Khan Academy announces GPT-4 powered learning guide
Hi everyone, Sal Khan here from Khan Academy, and I’m very excited to let you all know about the work that Khan Academy is now doing in artificial intelligence. Obviously, over the last many months, there’s been a lot of talk about artificial intelligenc…
Transforming exponential graphs | Mathematics III | High School Math | Khan Academy
We’re told the graph of y = 2^x is shown below. All right, which of the following is the graph of y = 2^(-x) - 5? So there’s two changes here: instead of 2^x, we have 2^(-x) and then we’re not leaving that alone; we then subtract five. So let’s take them…
Catch of the Week - Hundred-Incher | Wicked Tuna
[Music] Oh nice, Mark. [Music] Dude, we’re on! It’s a big one! Go to work! Yes, sir! Thank God that Drake freed us from the anchor line earlier, or we wouldn’t be able to chase this fish down. Get him, get him, get him! Get some, baby! Get some! Nice wor…
He Spent 40 Years Alone in the Woods, and Now Scientists Love Him | Short Film Showcase
Have you ever wondered if you watched the snow long enough what stories it might tell? There is someone who has done it; his name is Billy Barr. I spell it small b i l l y small b a r r. Some people call him the Snow Guardian. He lives in a cabin out in t…
The Upcoming Stock Market Collapse | Round 2
What’s up, you guys? It’s Graham here. So, you know the saying, “What goes up must come down”? Well, it’s been coming down a lot lately. And it just goes to show you that a lot can happen in a week because just a few weeks ago, the S&P 500 logged one …