yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Fluid flow and vector fields | Multivariable calculus | Khan Academy


3m read
·Nov 11, 2024

So in the last video, I talked about vector fields, and here I want to talk about a special circumstance where they come up. So imagine that we're sitting in the coordinate plane, and that I draw for you a whole bunch of little droplets, droplets of water.

Then these are going to start flowing in some way. How would you describe this flow mathematically? At every given point, the particles are moving in some different way. Over here, they're kind of moving down and to the left; here, they're moving kind of quickly up; and over here, they're moving more slowly down.

So what you might want to do is assign a vector to every single point in space. A common attribute of the way that fluids flow—this isn't necessarily obvious—but if you look at a given point in space, let's say like right here, every time that a particle passes through it, it's with roughly the same velocity.

So you might think over time that velocity would change, and sometimes it does. A lot of times there's some fluid flow where it depends on time, but for many cases, you can just say at this point in space, whatever particle is going through it, it'll have this velocity vector.

So over here, they might be pretty like high upwards, whereas here it's kind of a smaller vector downwards. Even though—and here I'll play the animation a little bit more—if you imagine doing this at all of the different points in space and assigning a vector to describe the motion of each fluid particle at each different point, what you end up getting is a vector field.

So this here is a little bit of a cleaner drawing than what I have, and as I mentioned in the last video, it's common for these vectors not to be drawn to scale but to all have the same length just to get a sense of direction. Here you can see each particle is flowing roughly along that vector.

So whatever one it's closest to, it's moving in that direction. And this is not just a really good way of understanding fluid flow, but it goes the other way around; it's a really good way of understanding vector fields themselves.

So sometimes you might just be given some new vector field, and to get a feel for what it's all about—how to interpret it, what special properties it might have—it's actually helpful, even if it's not meant to represent a fluid, to imagine that it does, and think of all the particles, and think of how they would move along it.

For example, this particular one, as you play the animation, as you let the particles move along the vectors, there's no change in the density. At no point do a bunch of particles go inward or a bunch of particles go outward; it stays kind of constant.

And that turns out to have a certain mathematical significance down the road. You'll see this later on as we study a certain concept called divergence. Over here, you see this vector field, and you might want to understand what it's all about. It's kind of helpful to think of a fluid that pushes outward from everywhere, and this kind of decreasing in density around the center.

That also has a certain mathematical significance, and it might also lead you to ask certain other questions. Like, if you look at the fluid flow that we started with in this video, you might ask a couple questions about it.

Like, it seems to be rotating around some points—in this case, counterclockwise—but it's rotating clockwise around others still. Does that have any kind of mathematical significance? Does the fact that there seem to be the same number of particles roughly in this area but they're slowly spilling out, what does that imply for the function that represents this whole vector field?

You'll see a lot of this later on, especially when I talk about divergence and curl. But here, I just wanted to give a little warmup to that as we're just visualizing multivariable functions.

More Articles

View All
The 2023 Recession Keeps Getting Worse
What’s up Grandma? It’s guys here. So while everyone is busy watching Tesla drop the price of their cars by up to 20%, we’ve got another issue quietly brewing behind the scenes. That’s the fact that the United States is quickly running out of money, with …
Continental Drift 101 | National Geographic
Talk about the ultimate breakup. Europe and Africa have been splitting apart from the American continents for millions of years at a rate of approximately 2.5 cm per year. The continents are moving about as fast as our fingernails grow. As they continue t…
TRUE Limits Of Humanity – The Final Border We Will Never Cross
Is there a border we will never cross? Are there places we will never reach no matter how hard we try? It turns out there are. Even with sci-fi technology, we are trapped in a limited pocket of the universe and the finite stuff within it. How much univers…
The real cost of owning a car | Car buying | Financial Literacy | Khan Academy
So let’s think about all of the costs that are involved in buying the car. The first and most obvious one is the cost of the car itself. Now, it’s really important to think about what the actual cost of the car is, because you might say, “Okay, there’s Ca…
Whip My MOVE Back and Forth -- Black Nerd Comedy
[Music] I whip my move back in for my place in it. That’s it, so fun with mommy! But if we move back, it will probably turn it back in for [ __ ] with my weed back before we mousse it. Nick Maxine for you know I love Nintendo is my friend. Oh, I can’t pre…
The GameStop Infinite Money Glitch Explained
What’s up you, Graham? It’s guys here, and today we got to talk about one of the most requested, most mind-boggling topics of investing insanity that I have ever seen. That’s happening right now and causing some people to make millions of dollars in the p…