yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to residuals and least-squares regression | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Let's say we're trying to understand the relationship between people's height and their weight. So what we do is we go to 10 different people and we measure each of their heights and each of their weights.

And so on. This scatter plot here, each dot represents a person. So, for example, this dot over here represents a person whose height was 60 inches or 5 feet tall. So that's the point (60, ) and whose weight, which we have on the y-axis, was 125 pounds.

And so when you look at this scatter plot, your eyes naturally see some type of a trend. It seems like, generally speaking, as height increases, weight increases as well. But I said, generally speaking, you definitely have circumstances where there are taller people who might weigh less.

But an interesting question is, can we try to fit a line to this data? This idea of trying to fit a line as closely as possible to as many of the points as possible is known as linear regression. Now, the most common technique is to try to fit a line that minimizes the squared distance to each of those points.

And we're going to talk more about that in future videos, but for now, we want to get an intuitive feel for that. So if you were to just eyeball it and look at a line like that, you wouldn't think that it would be a particularly good fit. It looks like most of the data sits above the line.

Similarly, something like this also doesn't look that great. Here, most of our data points are sitting below the line. But something like this actually looks very good. It looks like it's getting as close as possible to as many of the points as possible.

It seems like it's describing this general trend, and so this is the actual regression line. The equation here we would write as, and we'd write y with a little hat over it, and that means that we're trying to estimate a y for a given x.

It's not always going to be the actual y for a given x because, as we see, sometimes the points aren't sitting on the line. But we say y hat is equal to, and our y-intercept for this particular regression line is negative 140 plus the slope 14 over 3 times x.

Now, as we can see, for most of these points, given the x value of those points, the estimate that our regression line gives is different than the actual value. And that difference between the actual and the estimate from the regression line is known as the residual.

So let me write that down. So, for example, the residual at that point is going to be equal to, for a given x, the actual y value minus the estimated y value from the regression line for that same x.

Or another way to think about it is, for that x value when x is equal to 60, we're talking about the residual just at that point. It's going to be the actual y value minus our estimate of what the y value is from this regression line for that x value.

So pause this video and see if you can calculate this residual, and you could visually imagine it as being this right over here. Well, to actually calculate the residual, you would take our actual value, which is 125 for that x value.

Remember, we're calculating the residual for a point, so it's the actual y there minus what would be the estimated y there for that x value. Well, we could just go to this equation and say what would y hat be when x is equal to 60?

What's it going to be equal to? Let's see. We have negative 140 plus 14 over 3 times 60. Let's see, 60 divided by 3 is 20. 20 times 14 is 280. And so all of this is going to be 140.

And so our residual for this point is going to be 125 minus 140, which is negative 15. And residuals indeed can be negative. If your residual is negative, it means for that x value, your data point, your actual y value is below the estimate.

If we were to calculate the residual here or if we were to calculate the original here, our actual for that x value is above our estimate, so we would get positive residuals. And as you will see later in your statistics career, the way that we calculate these regression lines is all about minimizing the square of these residuals.

More Articles

View All
2015 AP Calculus AB 5c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
So part C: Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer. Points of inflection happen when we go from concave upwards to downwards or vice versa. This is true if and only if f double prime of x goes …
Michael Burry Just Doubled Down on Stocks
As you all know, Michael Barry, depicted in The Big Short by Christian Bale, made his millions by betting against the U.S. housing market in the lead-up to the 2008 global financial crisis by buying credit default swaps on doomed mortgage-backed securitie…
Worked example of linear regression using transformed data | AP Statistics | Khan Academy
We are told that a conservation group with a long-term goal of preserving species believes that all at-risk species will disappear when land inhabited by those species is developed. It has an opportunity to purchase land in an area about to be developed. …
Rediscovering Youth on the Colorado River | Short Film Showcase
[Music] When I was born in the summer of ‘86, my dad wrote me these words: “The important places, child of mine, come as you grow. In youth you will learn the secret places: the cave behind the waterfall, the arms of the oak that hold you high, the stars…
North Carolina's Nuclear Incident | The Strange Truth
[Music] Bomb number one was literally a Washington Monument right in the middle of a tobacco field, tail up in the air. The parachute that had deployed was strewn amongst the branches. We found that the weapon was in sufficiently safe condition to transpo…
How I started my business. 📈
How did you end up in London and why London? I read originally you’re from New York. Yeah, I am from New York. I left the business for a while. I was in private equity, working with guys doing some corporate takeovers. And then I decided to get back into…