yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to residuals and least-squares regression | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Let's say we're trying to understand the relationship between people's height and their weight. So what we do is we go to 10 different people and we measure each of their heights and each of their weights.

And so on. This scatter plot here, each dot represents a person. So, for example, this dot over here represents a person whose height was 60 inches or 5 feet tall. So that's the point (60, ) and whose weight, which we have on the y-axis, was 125 pounds.

And so when you look at this scatter plot, your eyes naturally see some type of a trend. It seems like, generally speaking, as height increases, weight increases as well. But I said, generally speaking, you definitely have circumstances where there are taller people who might weigh less.

But an interesting question is, can we try to fit a line to this data? This idea of trying to fit a line as closely as possible to as many of the points as possible is known as linear regression. Now, the most common technique is to try to fit a line that minimizes the squared distance to each of those points.

And we're going to talk more about that in future videos, but for now, we want to get an intuitive feel for that. So if you were to just eyeball it and look at a line like that, you wouldn't think that it would be a particularly good fit. It looks like most of the data sits above the line.

Similarly, something like this also doesn't look that great. Here, most of our data points are sitting below the line. But something like this actually looks very good. It looks like it's getting as close as possible to as many of the points as possible.

It seems like it's describing this general trend, and so this is the actual regression line. The equation here we would write as, and we'd write y with a little hat over it, and that means that we're trying to estimate a y for a given x.

It's not always going to be the actual y for a given x because, as we see, sometimes the points aren't sitting on the line. But we say y hat is equal to, and our y-intercept for this particular regression line is negative 140 plus the slope 14 over 3 times x.

Now, as we can see, for most of these points, given the x value of those points, the estimate that our regression line gives is different than the actual value. And that difference between the actual and the estimate from the regression line is known as the residual.

So let me write that down. So, for example, the residual at that point is going to be equal to, for a given x, the actual y value minus the estimated y value from the regression line for that same x.

Or another way to think about it is, for that x value when x is equal to 60, we're talking about the residual just at that point. It's going to be the actual y value minus our estimate of what the y value is from this regression line for that x value.

So pause this video and see if you can calculate this residual, and you could visually imagine it as being this right over here. Well, to actually calculate the residual, you would take our actual value, which is 125 for that x value.

Remember, we're calculating the residual for a point, so it's the actual y there minus what would be the estimated y there for that x value. Well, we could just go to this equation and say what would y hat be when x is equal to 60?

What's it going to be equal to? Let's see. We have negative 140 plus 14 over 3 times 60. Let's see, 60 divided by 3 is 20. 20 times 14 is 280. And so all of this is going to be 140.

And so our residual for this point is going to be 125 minus 140, which is negative 15. And residuals indeed can be negative. If your residual is negative, it means for that x value, your data point, your actual y value is below the estimate.

If we were to calculate the residual here or if we were to calculate the original here, our actual for that x value is above our estimate, so we would get positive residuals. And as you will see later in your statistics career, the way that we calculate these regression lines is all about minimizing the square of these residuals.

More Articles

View All
Pick a Business Model With Leverage
One more question about leverage. Do you think a choice of business model or a choice of product can also bring a kind of leverage to it? For example, pursuing a business that has network effects, pursuing a business that has brand effects, or other choic…
How to Set Goals: My goals for 2018 ($1 Million in income)
So guys, if you want to achieve something, it’s not just gonna randomly happen to you. It’s not just gonna fall from the sky onto your lap and like, “Oh, whoops, there it is!” That’s not gonna happen. In order to get something, you really have to want wha…
Gel electrophoresis | Biomolecules | MCAT | Khan Academy
Let’s say that you have some vials here, and you know that in the solution you have fragments of DNA in each of these. What you’re curious about is, well, what about the DNA fragments in this first vial, in vial number one? How long are those fragments? H…
Technology on a Cruise Ship | Making the Disney Wish | Mini Episode 5
We’re delivering these experiences that have so much technology and technical things that go into it, but the guests will never notice. They’re just going to have this amazing experience with AquaMouse. We bring the wonderful world of Mickey Mouse and all…
Mind Reading
Mind reading? Of course not. I love reading. Look, mind reading might sound like pseudoscientific—pardon my language—bullshoot. But its scientific counterpart, thought identification, is very much a real thing. It’s based in neuroimaging and machine learn…
3 Mindfulness Exercises to Inspire You + Your Students
Hey everyone! This is Jeremy Schiefling with Khan Academy. Thank you so much for joining us today! I’m super excited for a really action-packed session today, and I think this is a very timely session as well as we head into the last month of an incredibl…