yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to residuals and least-squares regression | AP Statistics | Khan Academy


3m read
·Nov 11, 2024

Let's say we're trying to understand the relationship between people's height and their weight. So what we do is we go to 10 different people and we measure each of their heights and each of their weights.

And so on. This scatter plot here, each dot represents a person. So, for example, this dot over here represents a person whose height was 60 inches or 5 feet tall. So that's the point (60, ) and whose weight, which we have on the y-axis, was 125 pounds.

And so when you look at this scatter plot, your eyes naturally see some type of a trend. It seems like, generally speaking, as height increases, weight increases as well. But I said, generally speaking, you definitely have circumstances where there are taller people who might weigh less.

But an interesting question is, can we try to fit a line to this data? This idea of trying to fit a line as closely as possible to as many of the points as possible is known as linear regression. Now, the most common technique is to try to fit a line that minimizes the squared distance to each of those points.

And we're going to talk more about that in future videos, but for now, we want to get an intuitive feel for that. So if you were to just eyeball it and look at a line like that, you wouldn't think that it would be a particularly good fit. It looks like most of the data sits above the line.

Similarly, something like this also doesn't look that great. Here, most of our data points are sitting below the line. But something like this actually looks very good. It looks like it's getting as close as possible to as many of the points as possible.

It seems like it's describing this general trend, and so this is the actual regression line. The equation here we would write as, and we'd write y with a little hat over it, and that means that we're trying to estimate a y for a given x.

It's not always going to be the actual y for a given x because, as we see, sometimes the points aren't sitting on the line. But we say y hat is equal to, and our y-intercept for this particular regression line is negative 140 plus the slope 14 over 3 times x.

Now, as we can see, for most of these points, given the x value of those points, the estimate that our regression line gives is different than the actual value. And that difference between the actual and the estimate from the regression line is known as the residual.

So let me write that down. So, for example, the residual at that point is going to be equal to, for a given x, the actual y value minus the estimated y value from the regression line for that same x.

Or another way to think about it is, for that x value when x is equal to 60, we're talking about the residual just at that point. It's going to be the actual y value minus our estimate of what the y value is from this regression line for that x value.

So pause this video and see if you can calculate this residual, and you could visually imagine it as being this right over here. Well, to actually calculate the residual, you would take our actual value, which is 125 for that x value.

Remember, we're calculating the residual for a point, so it's the actual y there minus what would be the estimated y there for that x value. Well, we could just go to this equation and say what would y hat be when x is equal to 60?

What's it going to be equal to? Let's see. We have negative 140 plus 14 over 3 times 60. Let's see, 60 divided by 3 is 20. 20 times 14 is 280. And so all of this is going to be 140.

And so our residual for this point is going to be 125 minus 140, which is negative 15. And residuals indeed can be negative. If your residual is negative, it means for that x value, your data point, your actual y value is below the estimate.

If we were to calculate the residual here or if we were to calculate the original here, our actual for that x value is above our estimate, so we would get positive residuals. And as you will see later in your statistics career, the way that we calculate these regression lines is all about minimizing the square of these residuals.

More Articles

View All
Worked example: Chain rule with table | Derivative rules | AP Calculus AB | Khan Academy
The following table lists the values of functions f and g and of their derivatives f prime and g prime for the x values negative 2 and 4. And so, you can see for x equals negative 2, x equals 4, they give us the values of f, g, f prime, and g prime. Let …
Reject Most Advice
Regarding the guy that gets rich in five years, one of the tweets that you had on the cutting room floor was: avoid people who got rich quickly; they’re just giving you their winning lottery ticket numbers. This is generally true of advice anyway, which i…
Q&A With Grey: Just Because Edition
Hello Internet. When’s the next Q&A with Grey? - Discord21337 Right now! What opinion have you held for a time and then changed radically? - desvirtuado Well, as mentioned the first time I talked about changing your mind, this is always hard to disc…
5 Stoic Secrets for Calm and Fulfilling Relationships | Stoicism
Welcome to Stoicism Insights, where we explore timeless wisdom for modern living. Today, we delve into Stoic principles that can transform your relationships, offering practical tips to foster harmony and inner peace. Stay until the end for a special offe…
15 Most Expensive Mistakes You Can Make in Life
Not all mistakes are created equal, and you’ve got a couple ahead of you that could make or break your future. By the end of this video, you’ll have a clear understanding of what you should pay attention to. Here are 15 expensive mistakes that you can mak…
The Best Test of General Relativity (by 2 Misplaced Satellites)
Okay… Hello. Hey. So, this is good, this is good. You - you’re working, can you see me? I can see you. Do you know what went wrong in-uh.. during the launch..? Yes - it’s not complicated, but, it’s a long chain of events. On August 21, 2014, two satellit…