yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Meet the bluefin tuna, the toughest fish in the sea - Grantly Galland and Raiana McKinney


3m read
·Nov 8, 2024

What’s as big as a polar bear, swallows its prey whole, and swims at 40 miles an hour? It’s not a shark or a killer whale. It’s the Atlantic bluefin tuna. The largest and longest-lived of the 15 tuna species, the Atlantic bluefin has a unique set of adaptations that make it one of the most dominant predators in the ocean.

It starts as a tiny hatchling in the Gulf of Mexico or the Mediterranean Sea, no bigger than a human eyelash. Within its first year of life, it develops something known as regional endothermy—the ability to regulate its body temperature. An Atlantic bluefin gets oxygen from cold ocean water using its gills. This process cools its blood. Then, heat the tuna generates swimming and hunting warms the blood.

In most fishes, this heat would be lost back out into the ocean through the gills. But in the Atlantic bluefin, a mechanism called countercurrent exchange traps the heat. Cold blood on its way to the large swimming muscles passes close to warm blood leaving those muscles in a specialized network of blood vessels known as a rete mirabile. Here the heat “jumps” to the cold blood and stays in the body. This makes bluefin one of the few warm-blooded fishes, a huge advantage in the marine environment.

Cold-blooded animals whose body temperature depends entirely on the environment become sluggish in colder waters. But a bluefin’s ability to keep warm means it has sharper vision, can better process information, and can swim faster than its prey. It thrives in cold, deep, subarctic water. Thanks to their warm bloodedness, their powerful muscles, and their streamlined torpedo shape with fins that fold into grooves to reduce drag, bluefin tuna can reach speeds few other animals can match.

Their maximum speed of 40 miles per hour is faster than that of a great white shark or orca whale, and even at their comfortable cruising speed, they can cross the Atlantic in a couple of months. All this swimming requires a great deal of oxygen, but the bluefin is adapted for this as well. The faster it swims, the more water passes over its gills, and the more oxygen it can absorb from that water.

This need for a constant flow of water means the tuna must always remain on the move. It also means bluefin cannot suck prey into their mouths the way most other fishes do. Instead, they must chase down their prey with their mouths open. They eat smaller prey than most predators their size, including squid, crustaceans, and smaller fish species like mackerel.

The bluefin’s temperature-regulating ability doesn’t just make it a superior hunter—it gives it nearly unlimited range. As soon as they’re strong enough to swim against the current, Atlantic bluefin leave the warm waters of their spawning grounds and spend their lives hunting all over the Atlantic Ocean. Tunas from both the Gulf of Mexico and the Mediterranean Sea frequent the same feeding grounds and range from Brazil and Texas to Iceland and Senegal and beyond.

But when the time comes to reproduce around age 10, they always return to their sea of origin. Here, groups of males and females release millions of eggs and sperm into the water. They’ll migrate back and forth between feeding and spawning grounds annually for the rest of their lives. Atlantic bluefin can live for over 40 years, growing all the while. The largest specimens are tens of millions of times heavier than when they hatched.

The same huge size that makes bluefin tuna indomitable in the ocean has made them vulnerable to one predator in particular: us. Humans have a long history of fishing Atlantic bluefin—it’s even stamped on ancient Greek coins. But in recent decades, demand has skyrocketed as bluefin are hunted for sashimi, sushi, and tuna steaks. An individual fish can sell for $10,000 or more, promoting overfishing and illegal fishing.

But if recent conservation efforts are redoubled and quotas are better enforced, bluefin populations can begin to recover.

More Articles

View All
What the Discovery of the Last American Slave Ship Means to Descendants | National Geographic
[Music] I was born in this four-room house right next to the Union Baptist Church in Plateau Mobile, Alabama. [Music] In this house, my grandmother had taught us a whole lot about this history, but me being a little girl, I didn’t know that this history w…
One Final Shot: 15 Opportunities That Are Going Away Soon
You have all the time in the world until your world suddenly doesn’t have much time left. This year might be your last chance, so here are 15 things you’ve got one last chance to do. First up, change career fields. We seem to be at a breaking point here.…
Thermodynamics vs. kinetics | Applications of thermodynamics | AP Chemistry | Khan Academy
In chemistry, it’s important to distinguish between thermodynamics and kinetics. For example, if we think about the conversion of carbon as a solid in the diamond form to carbon as a solid in the graphite form, thermodynamics tells us what will happen. Wi…
Exploring Rodeo, Masculinity Through Photography | National Geographic
(Western music) (cow mooing) - I’m a contributing photographer to National Geographic Magazine. I relentlessly want to understand things, and particularly things that are not part of my sort of orbit of perception. (twangy Western music) (shouting) I’m in…
The Secret to Building Wealth Fast
What if we told you there was a way to build extreme levels of wealth incredibly fast? What if we told you that almost all self-made millionaires and billionaires have used this exact strategy to build their fortunes? And there’s nothing stopping you from…
How AI, Like ChatGPT, *Really* Learns
The main video is talking about a genetic breeding model of how to make machines learn. This method is simpler to explain or just show. Here is a machine learning to walk, or play Mario, or jump really high. A genetic code is an older code, but it still c…