yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Meet the bluefin tuna, the toughest fish in the sea - Grantly Galland and Raiana McKinney


3m read
·Nov 8, 2024

What’s as big as a polar bear, swallows its prey whole, and swims at 40 miles an hour? It’s not a shark or a killer whale. It’s the Atlantic bluefin tuna. The largest and longest-lived of the 15 tuna species, the Atlantic bluefin has a unique set of adaptations that make it one of the most dominant predators in the ocean.

It starts as a tiny hatchling in the Gulf of Mexico or the Mediterranean Sea, no bigger than a human eyelash. Within its first year of life, it develops something known as regional endothermy—the ability to regulate its body temperature. An Atlantic bluefin gets oxygen from cold ocean water using its gills. This process cools its blood. Then, heat the tuna generates swimming and hunting warms the blood.

In most fishes, this heat would be lost back out into the ocean through the gills. But in the Atlantic bluefin, a mechanism called countercurrent exchange traps the heat. Cold blood on its way to the large swimming muscles passes close to warm blood leaving those muscles in a specialized network of blood vessels known as a rete mirabile. Here the heat “jumps” to the cold blood and stays in the body. This makes bluefin one of the few warm-blooded fishes, a huge advantage in the marine environment.

Cold-blooded animals whose body temperature depends entirely on the environment become sluggish in colder waters. But a bluefin’s ability to keep warm means it has sharper vision, can better process information, and can swim faster than its prey. It thrives in cold, deep, subarctic water. Thanks to their warm bloodedness, their powerful muscles, and their streamlined torpedo shape with fins that fold into grooves to reduce drag, bluefin tuna can reach speeds few other animals can match.

Their maximum speed of 40 miles per hour is faster than that of a great white shark or orca whale, and even at their comfortable cruising speed, they can cross the Atlantic in a couple of months. All this swimming requires a great deal of oxygen, but the bluefin is adapted for this as well. The faster it swims, the more water passes over its gills, and the more oxygen it can absorb from that water.

This need for a constant flow of water means the tuna must always remain on the move. It also means bluefin cannot suck prey into their mouths the way most other fishes do. Instead, they must chase down their prey with their mouths open. They eat smaller prey than most predators their size, including squid, crustaceans, and smaller fish species like mackerel.

The bluefin’s temperature-regulating ability doesn’t just make it a superior hunter—it gives it nearly unlimited range. As soon as they’re strong enough to swim against the current, Atlantic bluefin leave the warm waters of their spawning grounds and spend their lives hunting all over the Atlantic Ocean. Tunas from both the Gulf of Mexico and the Mediterranean Sea frequent the same feeding grounds and range from Brazil and Texas to Iceland and Senegal and beyond.

But when the time comes to reproduce around age 10, they always return to their sea of origin. Here, groups of males and females release millions of eggs and sperm into the water. They’ll migrate back and forth between feeding and spawning grounds annually for the rest of their lives. Atlantic bluefin can live for over 40 years, growing all the while. The largest specimens are tens of millions of times heavier than when they hatched.

The same huge size that makes bluefin tuna indomitable in the ocean has made them vulnerable to one predator in particular: us. Humans have a long history of fishing Atlantic bluefin—it’s even stamped on ancient Greek coins. But in recent decades, demand has skyrocketed as bluefin are hunted for sashimi, sushi, and tuna steaks. An individual fish can sell for $10,000 or more, promoting overfishing and illegal fishing.

But if recent conservation efforts are redoubled and quotas are better enforced, bluefin populations can begin to recover.

More Articles

View All
2d curl nuance
In the last couple of videos, I’ve been talking about curl, where if we have a two-dimensional vector field v defined with component functions p and q. I’ve said that the 2D curl of that function v gives you a new function that also takes in x and y as in…
What Game Theory Reveals About Life, The Universe, and Everything
This is a video about the most famous problem in game theory. Problems of this sort pop up everywhere, from nations locked in conflict to roommates doing the dishes. Even game shows have been based around this concept. Figuring out the best strategy can m…
Mistakes when finding inflection points: not checking candidates | AP Calculus AB | Khan Academy
Olga was asked to find where f of x is equal to x minus two to the fourth power has inflection points. This is her solution. So we look at her solution, and then they ask us: Is Olga’s work correct? If not, what’s her mistake? So pause this video and see…
Watch: How Animals and People See the World Differently | National Geographic
[Music] What most people think of when they look at the world, they think other animals probably see the world pretty much the same way. Only with time do we realize that, of course, other animals don’t see the same things we see. That takes us to a sort …
Adam Brown on how to be resilient during a time of high stress and anxiety | Homeroom with Sal
Hi everyone, welcome to the daily homeroom live stream. Sal here from Khan Academy. For those of you who are wondering what this is, this live stream is something we started as soon as we saw schools starting to get closed around the world. Because we saw…
Resonance | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
Let’s see if we can draw the Lewis diagram for a nitrate anion. So, a nitrate anion has one nitrogen and three oxygens, and it has a negative charge. I’ll do that in another color; it has a negative charge. So, pause this video and see if you can draw th…