yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that Y is equal to 6 over x squared. What I want to do in this video is figure out what is the second derivative of Y with respect to X.

If you're wondering where this notation comes from for a second derivative, imagine if you started with your Y and you first take a derivative. We've seen this notation before, so that would be the first derivative. Then we want to take the derivative of that, so we then want to take the derivative of that to get us our second derivative. That's where that notation looks comes from. It looks like we're having you have a d squared d times d, although you're not really multiplying them.

Applying the derivative operator twice, it looks like you have a dx squared. Once again, you're not multiplying them; you're just applying the operator twice. But that's where that notation actually comes from.

Well, let's first take the first derivative of Y with respect to X. To do that, let's just remind ourselves that we just have to apply the power rule here. We can just remind ourselves, based on the fact that Y is equal to 6 X to the negative 2.

So let's take the derivative of both sides of this with respect to X. With respect to X, I'm going to do that, and so on the left-hand side, I'm going to have dy/dx is equal to, now on the right-hand side, take our negative 2, multiply it times the 6; it's going to get negative 12 X to the negative 2 minus 1, which is X to the negative 3.

Actually, let me give myself a little bit more space here. So this is negative 12 X to the negative 3. Now, let's take the derivative of that with respect to X. So I'm going to apply the derivative operator again.

The derivative with respect to X, now the left-hand side gets the second derivative of Y with respect to X is going to be equal to, well, we just used the power rule again. Negative 3 times negative 12 is positive 36 X times X to the, well, negative 3 minus 1 is negative 4 power, which we could also write as 36 over X to the fourth power.

And we're done.

More Articles

View All
LearnStorm 2022
Hi teachers, Sal Khan here from Khan Academy. I just wanted to remind you that LearnStorm is back and better than ever. In case you’re wondering why you should use LearnStorm or the LearnStorm tracker, we just have to remember what it’s like to be a lear…
Bobi Wine: The People’s President | Official Trailer | National Geographic Documentary Films
Election [Music] [Applause] [Music] [Applause] This is a message to the government. University, I didn’t know he was a musician. He was different. I didn’t have so many dreams; she impacted my life. She made me realize we had to impact other lives. I’ve …
Negative definite integrals | Integration and accumulation of change | AP Calculus AB | Khan Academy
We’ve already thought about what a definite integral means. If I’m taking the definite integral from ( a ) to ( b ) of ( f(x) \, dx ), I can just view that as the area below my function ( f ). So, if this is my y-axis, this is my x-axis, and ( y ) is equ…
Introduction to price elasticity of supply | APⓇ Microeconomics | Khan Academy
We’ve done many videos on the price elasticity of demand. Now we’re going to focus on the price elasticity of supply, and it’s a very similar idea; it’s just being applied to supply. Now, it’s a measure of how sensitive our quantity supplied is to percen…
The Second Great Awakening - part 3
Okay, so we’ve been talking about the Second Great Awakening and its context in early 19th century America. The Second Great Awakening was this period of religious revival that was kind of at its hot point in 1820 to 1840. In the last couple of videos, we…
Adding multiple two digit numbers word problem
We’re told that Tomer has a bookshelf. The table below shows how many books are on each shelf. So, the first shelf has 19 books, the second shelf has 24 books, the third shelf has 32 books, and the fourth shelf has seven books. How many books are on the b…