yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that Y is equal to 6 over x squared. What I want to do in this video is figure out what is the second derivative of Y with respect to X.

If you're wondering where this notation comes from for a second derivative, imagine if you started with your Y and you first take a derivative. We've seen this notation before, so that would be the first derivative. Then we want to take the derivative of that, so we then want to take the derivative of that to get us our second derivative. That's where that notation looks comes from. It looks like we're having you have a d squared d times d, although you're not really multiplying them.

Applying the derivative operator twice, it looks like you have a dx squared. Once again, you're not multiplying them; you're just applying the operator twice. But that's where that notation actually comes from.

Well, let's first take the first derivative of Y with respect to X. To do that, let's just remind ourselves that we just have to apply the power rule here. We can just remind ourselves, based on the fact that Y is equal to 6 X to the negative 2.

So let's take the derivative of both sides of this with respect to X. With respect to X, I'm going to do that, and so on the left-hand side, I'm going to have dy/dx is equal to, now on the right-hand side, take our negative 2, multiply it times the 6; it's going to get negative 12 X to the negative 2 minus 1, which is X to the negative 3.

Actually, let me give myself a little bit more space here. So this is negative 12 X to the negative 3. Now, let's take the derivative of that with respect to X. So I'm going to apply the derivative operator again.

The derivative with respect to X, now the left-hand side gets the second derivative of Y with respect to X is going to be equal to, well, we just used the power rule again. Negative 3 times negative 12 is positive 36 X times X to the, well, negative 3 minus 1 is negative 4 power, which we could also write as 36 over X to the fourth power.

And we're done.

More Articles

View All
How to calculate interquartile range IQR | Data and statistics | 6th grade | Khan Academy
Let’s get some practice calculating interquartile ranges. I’ve taken some exercises from the Khan Academy exercises here, and I’m going to solve it on my scratch pad. The following data points represent the number of animal crackers in each kid’s lunchbox…
Stop Buying Stocks
What’s up, Graham? It’s guys here. So since the beginning of time, investors have been trying to beat the market using everything from technical analysis, hedge fund recommendations, professional stock pickers, and even animals, who are often found to do …
Human impacts on ecosystems | Biodiversity and human impacts | High school biology | Khan Academy
What we’re going to talk about in this video is how human activity creates changes in the environment. Not just any changes, but changes that can disrupt an ecosystem and can threaten the very existence of some species. For the sake of this video, we’ll …
Creativity break: Why is creativity important in algebra? | Algebra 1 | Khan Academy
[Music] It’s all about solving problems. It’s not about, like, maybe in previous years you’ve done a multiplication table memorization. It’s not like memorizing how to solve problems; it’s learning the tools of how to solve problems and then using them, u…
The mindset that will (quickly) improve your life
So let me know if this has ever happened to you. You get really excited about starting a new diet. You’re starting to feel like crap about yourself, and you think a new diet will solve all your problems. So you start doing some research online. You read o…
What Credit Card Companies Don’t Tell You
What’s up guys? It’s Graham here. So it’s that time again, and that’s time for another credit card video. Now even though most of us by now know how to properly use a credit card, we understand the concepts. We know to pay off our bill in full every singl…