yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that Y is equal to 6 over x squared. What I want to do in this video is figure out what is the second derivative of Y with respect to X.

If you're wondering where this notation comes from for a second derivative, imagine if you started with your Y and you first take a derivative. We've seen this notation before, so that would be the first derivative. Then we want to take the derivative of that, so we then want to take the derivative of that to get us our second derivative. That's where that notation looks comes from. It looks like we're having you have a d squared d times d, although you're not really multiplying them.

Applying the derivative operator twice, it looks like you have a dx squared. Once again, you're not multiplying them; you're just applying the operator twice. But that's where that notation actually comes from.

Well, let's first take the first derivative of Y with respect to X. To do that, let's just remind ourselves that we just have to apply the power rule here. We can just remind ourselves, based on the fact that Y is equal to 6 X to the negative 2.

So let's take the derivative of both sides of this with respect to X. With respect to X, I'm going to do that, and so on the left-hand side, I'm going to have dy/dx is equal to, now on the right-hand side, take our negative 2, multiply it times the 6; it's going to get negative 12 X to the negative 2 minus 1, which is X to the negative 3.

Actually, let me give myself a little bit more space here. So this is negative 12 X to the negative 3. Now, let's take the derivative of that with respect to X. So I'm going to apply the derivative operator again.

The derivative with respect to X, now the left-hand side gets the second derivative of Y with respect to X is going to be equal to, well, we just used the power rule again. Negative 3 times negative 12 is positive 36 X times X to the, well, negative 3 minus 1 is negative 4 power, which we could also write as 36 over X to the fourth power.

And we're done.

More Articles

View All
Definite integral of sine and cosine product
We’re in our quest to give ourselves a little bit of a mathematical underpinning of definite integrals of various combinations of trig functions, so it’ll be hopefully straightforward for us to actually find the coefficients, our 4A coefficients, which we…
How Tutankhamun Got His Gold | Lost Treasures of Egypt
Thomas and Jennifer are investigating one of Tutankhamun’s secrets, excavating under a ruined fortress for evidence he got his gold from the inhospitable eastern desert. Did his miners shelter here? The team has just found something: stone blocks that off…
Representing endothermic and exothermic processes using energy diagrams | Khan Academy
Let’s say we run an experiment to determine if a reaction is endo or exothermic. For our hypothetical reaction, A reacts with B to form C, and let’s say this reaction takes place in aqueous solution in a beaker. We can define our system as the reactants a…
Congressional oversight of the bureaucracy | US government and civics | Khan Academy
In multiple videos already, we have talked about the three branches of government. At the federal level, you have the legislative branch, which is Congress, made up of two houses: the House of Representatives and the Senate. You have the executive branch,…
Political ideology and economics | US government and civics | Khan Academy
What we’re going to talk about in this video is how various political ideologies can affect folks’ views on economics. When we’re talking about economics and government policy around economics, there are two fundamental types. There’s fiscal policy, which…
Absorption and reflection | Waves | Middle school physics | Khan Academy
I’m showing you this beautiful picture of snow-capped mountains overlooking this alpine lake because there’s a lot of light moving around. Now we’re going to talk about the different ways that light can interact with different media. But what I’m talking…