yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that Y is equal to 6 over x squared. What I want to do in this video is figure out what is the second derivative of Y with respect to X.

If you're wondering where this notation comes from for a second derivative, imagine if you started with your Y and you first take a derivative. We've seen this notation before, so that would be the first derivative. Then we want to take the derivative of that, so we then want to take the derivative of that to get us our second derivative. That's where that notation looks comes from. It looks like we're having you have a d squared d times d, although you're not really multiplying them.

Applying the derivative operator twice, it looks like you have a dx squared. Once again, you're not multiplying them; you're just applying the operator twice. But that's where that notation actually comes from.

Well, let's first take the first derivative of Y with respect to X. To do that, let's just remind ourselves that we just have to apply the power rule here. We can just remind ourselves, based on the fact that Y is equal to 6 X to the negative 2.

So let's take the derivative of both sides of this with respect to X. With respect to X, I'm going to do that, and so on the left-hand side, I'm going to have dy/dx is equal to, now on the right-hand side, take our negative 2, multiply it times the 6; it's going to get negative 12 X to the negative 2 minus 1, which is X to the negative 3.

Actually, let me give myself a little bit more space here. So this is negative 12 X to the negative 3. Now, let's take the derivative of that with respect to X. So I'm going to apply the derivative operator again.

The derivative with respect to X, now the left-hand side gets the second derivative of Y with respect to X is going to be equal to, well, we just used the power rule again. Negative 3 times negative 12 is positive 36 X times X to the, well, negative 3 minus 1 is negative 4 power, which we could also write as 36 over X to the fourth power.

And we're done.

More Articles

View All
Enthalpy and phase changes | Thermodynamics | AP Chemistry | Khan Academy
[Instructor] Let’s say that we have some solid water or ice, and we want to melt the ice and turn the solid water into liquid water. This phase change of solid water to liquid water is called melting, and it takes positive 6.01 kilojoules per one mole to …
Inventing Graphics on Cave Walls | Origins: The Journey of Humankind
Early humans communicated with pictures and markings painted on cave walls and began to gradually work out symbols. As these markings spread and were understood and accepted, then you had the widespread transmission of ideas. We can see the very early day…
Digital and analog information | Information Technologies | High School Physics | Khan Academy
In this video, we’re going to talk about analog versus digital. Something that’s analog can be any value within a given range, while something digital is represented by a number of discrete or separate levels. To distinguish these two ideas, I like to th…
DO THIS To Turn $30,000 Into $3,000,000! | Kevin O'Leary & Sam Sheffer
[Music] Hey everybody, Mr. Wonderful here with another episode of Ask Mr. Wonderful. You know I gotta be honest with you, it’s my favorite show! I love it because it’s your questions that make it happen. And today we’re gonna take a little drive down a te…
Polar functions derivatives | Advanced derivatives | AP Calculus BC | Khan Academy
What we have here is the graph of r is equal to sine of two theta in polar coordinates. If polar coordinates look unfamiliar to you, or if you need to brush up on them, I encourage you to do a search for polar coordinates in Khan Academy or look at our pr…
Everything Wrong With The NEW X1 Credit Card
What’s up guys? It’s Graham here. So, okay fine, I get it. You guys have been sending me so many comments, DMs, emails, and even more comments asking me to review the Smart X1 credit card. So, if this finally makes everyone happy, then sure, we’re going …