yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives | Advanced derivatives | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Let's say that Y is equal to 6 over x squared. What I want to do in this video is figure out what is the second derivative of Y with respect to X.

If you're wondering where this notation comes from for a second derivative, imagine if you started with your Y and you first take a derivative. We've seen this notation before, so that would be the first derivative. Then we want to take the derivative of that, so we then want to take the derivative of that to get us our second derivative. That's where that notation looks comes from. It looks like we're having you have a d squared d times d, although you're not really multiplying them.

Applying the derivative operator twice, it looks like you have a dx squared. Once again, you're not multiplying them; you're just applying the operator twice. But that's where that notation actually comes from.

Well, let's first take the first derivative of Y with respect to X. To do that, let's just remind ourselves that we just have to apply the power rule here. We can just remind ourselves, based on the fact that Y is equal to 6 X to the negative 2.

So let's take the derivative of both sides of this with respect to X. With respect to X, I'm going to do that, and so on the left-hand side, I'm going to have dy/dx is equal to, now on the right-hand side, take our negative 2, multiply it times the 6; it's going to get negative 12 X to the negative 2 minus 1, which is X to the negative 3.

Actually, let me give myself a little bit more space here. So this is negative 12 X to the negative 3. Now, let's take the derivative of that with respect to X. So I'm going to apply the derivative operator again.

The derivative with respect to X, now the left-hand side gets the second derivative of Y with respect to X is going to be equal to, well, we just used the power rule again. Negative 3 times negative 12 is positive 36 X times X to the, well, negative 3 minus 1 is negative 4 power, which we could also write as 36 over X to the fourth power.

And we're done.

More Articles

View All
How volume changes from changing dimensions
So, I have a rectangular prism here and we’re given two of the dimensions. The width is two, the depth is three, and this height here, we’re just representing with an h. What we’re going to do in this video is think about how the volume of this rectangula…
5 Secrets You Shouldn't Share with Others | STOICISM INSIGHTS #stoicism
Welcome back to Stoicism Insights, your guide to unlocking the timeless wisdom of Stoic philosophy for a more fulfilling life. In this video, I’ll be addressing certain personal matters and situations that are best kept private, things that don’t serve an…
Correcting a Dachshund's Bad Habit | Cesar Millan: Better Human Better Dog
All right, so this is the final challenge. It’s a sick sack of obstacles. Caesar works with Millie, a seven-month-old dachshund, whose habit of eating trash off the ground could have lethal consequences. This is serious; this dog can actually get hurt. Ca…
Nature's 3D Printer: MIND BLOWING Cocoon in Rainforest - Smarter Every Day 94
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So, we just got off this boat, and we’re gonna walk for about an hour in the jungle to find a moth pupa. Okay, Phil just found it. So, what are we looking at here? This here is the pupa of a moth c…
Why Do We Play Games?
Hey, Vsauce. Michael here. Why do humans play games? Whether it’s a video game or a board game or a physical game, like soccer - or football. I don’t have to put the ball in the net to survive, and, even if I did, why would I invite a goalie and another …
The 5 MOST PROFITABLE Savings Accounts of 2019
What’s the guys, it’s Graham here. So I made this video about six months ago where I went over the most profitable savings accounts that you can get. Since then, in the last few months, I’ve received non-stop messages that the information is now outdated.…