yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing arithmetic series in sigma notation


3m read
·Nov 11, 2024

What I want to do in this video is get some practice writing Series in Sigma notation, and I have a series in front of us right over here. We have seven plus nine plus eleven, and we keep on adding all the way up to four hundred five.

So first, let's just think about what's going on here. How can we think about what happens at each successive term? So we're at seven, and then we're going to nine, and then we're going to eleven. It looks like we're adding two every time, so it looks like this is an arithmetic series.

So we add two, and then we add two again, and we're going to keep adding two all the way until we get to four hundred five. So let's think about how many times we are going to add two to get to... Sorry, how many times do we have to add two to get to four hundred five?

So four hundred five is seven plus two times what? So let me write this down. If we wanted four hundred five, it is equal to seven plus two times... I'll just write two times X. I'm just trying to figure out how many times do I have to add two to seven to get to four hundred five.

So that is going to be equal to... Let's see, if we subtract seven from both sides, we have three hundred ninety-eight is equal to two X. Or let's see, divide both sides by two, and we get this is going to be what? One hundred ninety-nine. One hundred ninety-nine is equal to X, so we're essentially adding two one hundred ninety-nine times.

So this is the first time we're adding two, this is the second time we're adding two times one, adding two times two, and here we're adding two times one hundred ninety-nine to our original seven.

So let's think about this a little bit. So this is going to be a sum—a sum from... So there are a couple of ways we could think about it. We could think about how many times we've added two.

So we could start with us adding two zero times. The number seven is when we haven't added two at all, all the way to when we add two one hundred ninety-nine times. And let's think about this a little bit. This is going to be...

We could write it as seven plus two times K. Seven plus two times K. When K equals zero, this is just going to be seven. When K equals one, it's seven plus two times one, well, it's going to be nine. When K is equal to two, it's going to be seven plus two times two, which is eleven.

And all the way, when K is equal to one hundred ninety-nine, it's going to be seven plus two times one hundred ninety-nine, which is three hundred ninety-eight, which would be four hundred five. So that's one way that we could write it.

Another way we could also write it as... Let me do this in a different color. We could, if we want to start our index at K equals one, then let's see, it's going to be... The first term is going to be seven plus two times K minus one.

Notice the first term works out because we're not adding two at all, so one minus one is equal to zero, so you're just going to get seven. Then when K is equal to two, the second term, you're going to add two one time because two minus one is one.

So that gives us that one. And so how many total terms are we going to have here? Well, one way to think about it is I just shifted the indices up by one. So we're going to go from K equals one to two hundred.

And you can verify this—when K is equal to two hundred, this is going to be two hundred minus one, which is one hundred ninety-nine. Two times one hundred ninety-nine is three hundred ninety-eight plus seven is indeed four hundred five.

So when K equals two hundred, that is our last term here. So either way, these are legitimate ways of expressing this arithmetic series using Sigma notation.

More Articles

View All
The Most Persistent Myth
This will revolutionize education. No prediction has been made as often or as incorrectly as that one in 1922. It was Thomas Edison who declared that the motion picture is destined to revolutionize our educational system and that in a few years it will su…
Capturing the Beauty of Africa’s Wildlife and Fighting to Save It | Nat Geo Live
Derek Joubert: Anybody who’s spent time under the stars like this, in Botswana really understands. Anybody who’s listened to this call and knows it will know why we fell in love with Africa. ( leopard growls ) Beverly Joubert: And if the night sounds go …
How to buy and sell private jets!
What’s happening, guys? It’s Max with Bizam Media. I’m at the NBAA base in 2023. I’m with Steve Bano, president and CEO of the jet business. You know, people tell me I’m the Steve, I’m the Steve of the United States. I don’t have a private jet in my offic…
Capturing Death - What One Photographer Learned on Assignment | Exposure
How do you want to die? Is really the question. You know, what is the quality of your death? What is the quality of a good death? It is the thing that we’re most afraid of. You’re going to die. You will be no more. Who, whoever it is that you believe you …
The Placebo Effect: Mind Over Matter
The mind can hold tremendous power over our bodies. People walking over burning coal with no sign of pain, seemingly average people achieving feats of superhuman strength, or even just the everyday person overcoming tremendous adversity. We’ve all heard t…
My Favorite Watches From My Million Dollar Collection!
If they raised it, maybe they sold 50% of the business for a million bucks. I mean, if it’s worth 2 million, I’m throwing up. I went to the vault, and I got these puppies out—the hottest watch in the world. I was looking at it; oh, I was staring at this—t…