yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Slope, x-intercept, y-intercept meaning in context | Algebra I | Khan Academy


3m read
·Nov 10, 2024

We're told Glenn drained the water from his baby's bathtub. The graph below shows the relationship between the amount of water left in the tub in liters and how much time had passed in minutes since Glenn started draining the tub. And then they ask us a few questions: How much water was in the tub when Glenn started draining? How much water drains every minute? Every two minutes? How long does it take for the tub to drain completely?

Pause this video and see if you can answer any or all of these questions based on this graph right over here.

All right, now let's do it together. Let's start with this first question: How much water was in the tub when Glenn started draining? So what we see here is when we're talking about when Glenn started draining, that would be at time t equals zero. So time t equals zero is right over here. And then, so how much water is in the tub? It's right over there.

And this point, when you're looking at a graph, often has a special label. If you view this as the y-axis, the vertical axis is the y-axis, and the horizontal axis is the x-axis. Although when you're measuring time, sometimes people will call it the t-axis, but for the sake of this video, let's call this the x-axis. This point at which you intersect the y-axis tells you what is y when x is zero, or what is the water in the tub when time is zero.

So this tells you the y-intercept here, tells you how much, in this case, how much water we started off with in the tub. And we can see it's 15 liters, if I'm reading that graph correctly.

How much water drains every minute? Every two minutes? Pause this video. How would you think about that? All right, so they're really asking about a rate. What's the rate at which water's draining every minute?

So let's see if we can find two points on this graph that look pretty clear. So right over there at time one minute, looks like there's 12 liters in the tub. Then at time two minutes, there's nine liters.

So it looks like as one minute passes, we go plus one minute, plus one minute. What happens to the water in the tub? Well, it looks like the water in the tub goes down by—from 12 liters to 9 liters—so negative 3 liters. And this is a line, so that should keep happening.

So if we forward another plus one minute, we should go down another three liters, and that is exactly what is happening. So it looks like the tub is draining three liters per minute. So draining, draining three liters per minute. And so if they say every two minutes—well, if you're doing three liters for every one minute, then you're going to do twice as much every two minutes. So six liters every two minutes.

But all of this, the second question, we were able to answer by looking at the slope. So in this context, the y-intercept helps us figure out where we started off. The slope is telling us the rate at which the water—in this case—is changing.

And then they ask us, how long does it take for the tub to drain completely? Pause this video and see if you can answer that.

Well, the situation in which the tub has drained completely means that there's no water left in the tub. So that means that our y-value, our water value, is down at zero.

And that happens on the graph right over there. And this point where the graph intersects the x-axis, that's known as the x-intercept. In this context, it says, hey, at what x-value do we not have any of the y-value left? The water has run out.

And we see that happens at an x-value of five. And but that's giving us the time in minutes. So that happens at five minutes. After five minutes, all of the water is drained. And that makes a lot of sense: if you have 15 liters and you're draining three liters every minute, it makes sense that it takes five minutes to drain all 15 liters.

More Articles

View All
Generating Wind Power | Live Free or Die
We got a whole slew of scrap line around our property, and we happen to have a treadmill that we could probably salvage the motor from and, uh, use it for a generator. Whoa, crazy! That was nuts! That was easy! What are you doing? I’m taking this thing a…
Theories Are Explanations, Not Predictions
There’s another example from science like this. On a heat source, put a beaker of water, then put a thermometer into that water and turn on your heat source. Then record, as the time passes, what the temperature of the water is. You will notice that the t…
Building a Sled | Alaska: The Next Generation
It’s a very harsh weather out here, very unpredictable. Takes a lot of time and effort to have everything ready for the winter. Ready? Yeah. Well pull up maybe, uh, pull the side out first, this way. Go on this side, and I’ll go on this side. This is the…
What's in Hand Sanitizer? | Ingredients With George Zaidan (Episode 9)
What’s in here, what’s it do, and can I make it from scratch ingredients? Now, you might already know that the ingredient in here that kills germs is ethyl alcohol—or, as we purist chemists like to call it, ethanol—which is exactly the same molecule that…
Worked example: Rewriting expressions by completing the square | High School Math | Khan Academy
Let’s see if we can take this quadratic expression here, ( x^2 + 16x + 9 ), and write it in this form. You might be saying, “Hey Sal, why do I even need to worry about this?” One, it is just good algebraic practice to be able to manipulate things. But as…
Chef Wonderful's Game-Changing Kitchen Gadget l Turbo Trusser
Have you ever cooked a chicken that was so dry it was barely edible? Or served a turkey at Thanksgiving that was so parched your guest wanted to offer it a drink? Well, that’s why we created the Turbo Trusser. The Turbo Trusser is a rapid trussing device …