yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Underestimating the problem of induction


4m read
·Nov 8, 2024

I'm going to talk about two of the biggest problems I can see with the presupposition lists. Attempts to establish a rational basis for inductive reasoning. Hum's writing on inductive inference draws our attention to the fact that inductive inferences are not rational; they arise from custom and habit.

One way to illustrate this is to think of whether the sun will rise tomorrow. Most of us agree that the sun is more likely to rise tomorrow than it is not to rise. Whichever way we explain our judgment about the likelihood of a sunrise, all our explanations depend on the assumption that the future will resemble the past in a fundamental way.

To give a more concrete example, we assume that the laws of physics we understand today won't be radically contradicted by how things behave tomorrow. But what are these assumptions based on? How can we know that the laws of physics that explain the sunrise will function in the same way tomorrow as they do today? It seems that we can't know these things, and it's not immediately obvious how we can even assign probabilities to them.

It can feel unsatisfying to think that our expectations about the future are inherently irrational. The presuppositionalist thinks that he has a way out. He believes that a God exists who has promised to maintain the uniformity of nature. We can take the uniformity of nature to mean that the future will resemble the past in some fundamental way.

There are at least two distinct problems with the solution, though, either of which invalidate it. They can be summarized as follows:

  1. We can't trust a God's promise without using induction. So if you're using God's word to justify induction, you're begging the question.
  2. Even if nature is uniform, this isn't enough to provide a rational justification for induction, as illustrated by the Black Swan example.

I'm going to explain the first problem in a bit more detail. According to the presupposition list, God has promised to maintain the uniformity of nature, which is needed if inductive inferences are ever going to turn out to be true. God is all-powerful, and his word is final, so that might seem to settle things.

But even if we ignore the so-called biblical evidence, which plainly shows that God often changes his mind and breaks his promises, it's not as simple as that. How do we know to trust someone's promise? In deciding about their trustworthiness, we take things into consideration about the one who's making the promise.

A particularly important consideration is whether the promise maker has broken or kept his promises in the past. To see that this applies even if we're considering a divine promise maker, think about how you'd react to a new promise from a God who had made many promises in the past and broken all of them. Even his most devout worshipper would be a fool to trust him.

So the presuppositionalist uses the ideas he has about how his God behaved in the past and comes to the conclusion that his God is very unlikely to break his promise about the uniformity of nature in the future. He's using induction: "God never lied to me in the past; God won't lie to me in the future."

But remember that induction is the very thing that the presuppositionalist wanted to justify in the first place. The presuppositionalist might protest that he's not really using induction to know that God won't lie. He might say that he knows God won't lie because it's not in God's nature to lie.

But all he's done is generate a different indu of justification: "God's nature was X in the past; therefore, God's nature will be X in the future." Whichever way he chooses to explain his trust in God's word, the presuppositionalist uses induction in his solution. He's assuming what he sets out to prove. This is a fallacy called begging the question.

Any defense of rational induction that depends on a God's promise falls into the same trap. The second problem is that even if we know that nature is uniform, we still haven't done anything to provide a rational basis for induction. It seems that the only way we could be certain that an inductive inference would turn out to be true is if the universe was uniform and we knew everything about it, and this is clearly not the case.

While there are things we don't know about the universe, we can never be sure our inductive inferences will turn out to be true. Perhaps the sun, according to some previously unknown feature of our uniform universe, will vanish before the sunrise we predicted has had a chance to happen.

"All swans we have seen are white; therefore, all swans are white." Induction in a uniform universe can and does give false results. GPA's example of the black swan illustrates this. So the uniformity of nature, while being necessary in order for us to gain any advantage from our habits of induction, is useless if you want to establish a rational basis for inductive reasoning.

More Articles

View All
The Real Reason Flames Don't Have Shadows
Uh, why don’t flames have shadows? Like, I mean, hello, it’s kind of freaky. But it has everything to do with what a hydrocarbon flame is. When you look at a candle flame, the part you can see is not a gas, and it’s not a plasma, believe it or not. The p…
Fiscal and monetary policy in parallel | AP Macroeconomics | Khan Academy
In previous videos, we have talked at length about fiscal policy, and in other videos, we’ve talked at length about monetary policy. But now we’re going to talk about them together. Because at any given time in a country, there is some type of fiscal poli…
Species and the environment | Mechanisms of evolution | High school biology | Khan Academy
So we tend to view evolution and natural selection and the formation of new species, which is often called speciation, as a slow process that could take tens or hundreds of thousands of years, or in many cases millions of years. And that’s why it’s always…
Graphing negative number addition and subtraction expressions | 7th grade | Khan Academy
In this video, we’re going to add and subtract negative numbers on a number line. The important thing to realize is if you are adding a positive number, you start at some point on the number line and you move that many units to the right. If you are addin…
What Successful Founders Focus On - Dalton Caldwell
One of the things that I’ve seen very successful founders and lucky founders focus on is their product, customers, revenue, their team, and not really focus on all of the noise in the startup ecosystem. Specifically, there’s a great deal of press every da…
How I make $13,800 PER MONTH on YouTube (How much YouTubers make)
So I definitely don’t want to give anyone the idea that the only reason I’m doing this is for money because that couldn’t be further from the truth, and I would be doing this regardless of how much money I make. But I have a feeling this video might inspi…