yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
The Strange Physics Principle That Shapes Reality
This is a video about a single simple rule that underpins all of physics, every principle, from classical mechanics to electromagnetism, from quantum theory to general relativity, right down to the ultimate constituents of matter, the fundamental particle…
How Should Business Schools Prepare Students for Startups? – Jeff Bussgang and Michael Seibel
Hey, this is Craig Cannon, and you’re listening to Y Combinator’s podcast. Today’s episode is a conversation about business schools and startups with Jeff Busgang, a lecturer at HBS and GP at Flybridge Capital Partners. Jeff called in to talk with YC CEO …
What Happens When Cape Town Runs Out of Water? | Short Film Showcase
I think the question on everyone’s minds is: how did Cape Town get here? 2013, which was only five years ago, we had the record rainfall year where lots and lots of water dams were full. In 2014, we had a drop in those dams. When we got to the 1st of Octo…
Transitioning from counting to multiplying to find area | 3rd grade | Khan Academy
This square is one square unit. So, what is the area of rectangle A? The first thing we’re told is that each of these little squares equals one square unit, and then we’re asked to find the area of rectangle A. Here’s rectangle A, and area is the space th…
How much money you actually need..
Money. Our lives revolve around it. We all want it. We know we all want it. Most of it doesn’t even exist beyond the heavy-duty servers of some bank, and yet the pursuit continues for this elusive thing. Despite its presence in everyday life, despite the …
15 Brutal TRUTHS People Don't Want To Hear
[Music] This is the Sunday motivational video. Every Sunday, we bring you a different type of video which should improve your life. Today, we’re looking at 15 brutal truths that people don’t want to hear. Welcome to a lox calm, the place where future bill…