yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
The Surprising Science of How We "Taste" Food | National Geographic
[Music] 75 to 95% of what we call taste is really smell. When we perceive the flavors of food, it really feels like the experience is there in your mouth, and yet, in fact, it’s your brain kind of playing tricks on you in a way. Neurogastronomy is the st…
If we extend lifespan, the greatest challenge is going to be boredom
If we extend lifespan, the greatest challenge is going to be boredom. Because the pattern seems to be that when you’re young, you’re amused by very short-term games. You’re amused by playing soap bubbles or Legos that are right in front of you and have no…
How to get Ants to carry a sign - Smarter Every Day 92
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So, you’re probably wondering, if you’ve been watching the Amazon series, how it took an 8-pin, a little scrap of paper, and a camera into the middle of the jungle, and walked out with footage of a…
Take an Epic Journey With the Elk of Yellowstone | Short Film Showcase
[Music] The tools of my trade are satellite collars. [Music] Here she goes, start getting locations and find out where she migrates. [Music] [Music] [Music] [Music] It’s like sending yourself a Christmas present in the mail. I put this collar on, and we d…
Constant-pressure calorimetry | Thermodynamics | AP Chemistry | Khan Academy
Calorimetry refers to the measurement of heat flow, and a device that’s used to measure heat flow is called a calorimeter. An easy way to make a calorimeter is to use two coffee cups. So at the base here, we have one coffee cup, and then we can also use a…
How a broken, screwed-up life can be beautiful (Kintsugi)
Imagine having a beautiful vase decorating your living room. And it’s not just a vase; it’s a genuine nineteenth-century, hand-painted piece of porcelain created in the Satsuma province in Japan. One day, your neighbor’s dog sneaks into your garden, walks…