yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
Why creating a strong password really matters
All right, Guemmy. So, as long as I can remember on the internet, you know, there’s always been, you create passwords, and I feel like every year they’re asking me to create more and more hard or more difficult to remember passwords. Why is this happening…
BEST CONSOLE MODS and other WTFs --- #8
Vsauce, good to see you all here! A few weeks ago, I saw it in your sleep submitted a great Fallout 3 glitch, and by great I mean booty shaken. I was so inspired, I decided to cover some more bauce video game WTFs. First off, Fallout New Vegas, where rig…
There’s a Bear in My Backyard | Podcast | Overheard at National Geographic
Foreign. It seemed to be happening everywhere this past summer. North of Boston, this is a very popular bear in Wilmington, popping up out of hedges and onto lawns. Near Saint Paul, Minnesota, in the video, you can see kids jumping off the playground equi…
Meet the Explorers | OceanXplorers | National Geographic
The Ocean: The Last Frontier on Earth. So much is unexplored and unexplained. To change that, okay, let’s do it! Ready: a kick-ass team of insanely talented specialists is setting out to push the frontiers of what we know about our oceans. Just stunningly…
Is It Too Late To Stop Climate Change? Well, it's Complicated.
Climate change is just too much. There’s never any good news. Only graphs that get more and more red and angry. Almost every year breaks some horrible record, from the harshest heat waves to the most rapid glacier melt. It’s endless and relentless. We’ve…
Identifying symmetrical figures | Math | 4th grade | Khan Academy
Which shapes are symmetrical? To answer this, we need to know what it means for a shape to be symmetrical. A shape is symmetrical if it has at least one line of symmetry. A line of symmetry, and now that answer is only helpful if we know what a line of sy…