yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
The WALKING WATER Mystery (in SPACE and SLOW MOTION!) - Smarter Every Day 160
Hey, it’s me Destin and welcome back to Smarter Every Day! I have a problem. There is a specific water phenomenon that I see happening all around me, but I have no idea how it works. I’ve been trying to figure it out for years. In fact, I put a video on t…
Warren Buffett: How To Make Easy Money From Falling Markets
We always will have $20 billion around Berkshire; we will never be dependent on the kindness of strangers. It didn’t work that well for BL to Bo either, but, but in any event, uh, we don’t, we don’t count on Bank lines—you know, we don’t count on, we don’…
Alaska Twins Live Off the Land 150 Miles From the Nearest Store | National Geographic
This is a very physically demanding way of life. There’s been times where I’ve been skiing for eight or ten hours through deep snow and stopping to maintain traps. I’m really tired and I’m hot and I’m sweaty, and I know that I’m just one sprained ankle aw…
How People Disappear
Hey, Vsauce. Michael here. A few years ago in Minneapolis, an angry dad stormed into the retail store Target. His daughter, a high schooler, had been receiving coupons in the mail from the store for things like cribs and diapers. Was Target encouraging hi…
Introducing Khan Academy’s Magical AI Tool for Teachers: Khanmigo
I am Deanna Klingman. I am a professional learning specialist with Khan Academy. Hello everyone, my name is Stacy Johnson. I lead professional learning for Khan Academy. Today, we are going to explore how Conmigo can support you and save you time. So whe…
Is War Over? — A Paradox Explained
Violence and war. The insane brutality of ISIS continues, the Russians are invading Ukraine, and the Palestinians and Israelis continue to slug it out. Does that make you feel gloomy? Well, don’t. Because if you look at the numbers, war actually seems to …