yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
Proof: perpendicular radius bisects chord
So we have this circle called circle O based on the point at its center, and we have the segment OD, and we’re told that segment OD is a radius of circle O. Fair enough! We’re also told that segment OD is perpendicular to this chord, to chord AC, or to se…
Video from Jeff Bezos about Amazon and Zappos
Hello, my name is Jeff Bezos. Uh, I started Amazon.com about 15 years ago. Uh, tons of stories from the early days. So we started the company in my house. Um, we didn’t have enough electric power in the house at a certain point. We only had about four em…
What Makes Kurzgesagt So Special?
We’d like to tell you a story about a kurzgesagt video that took us over 1000 hours to create. It all started with a simple idea. We stumbled upon something truly awe-inspiring. A piece of knowledge so important, we wanted to share it with as many people …
The Letter That Led to the Atomic Bomb | Genius
ALBERT EINSTEIN (VOICEOVER): Based on this new phenomenon, it is conceivable, though much less certain, that an extremely powerful bomb of a new type may be constructed. FRANKLIN DELANO ROOSEVELT: A single bomb of this type, carried by boat and exploded …
Assignment: Reflections | National Geographic
[Music] Assignment inspiration is a unique opportunity for free photographers to join National Geographic and seek new adventures. What’s exciting is we get to find new talent in three days. One of you will be selected to go on assignment with National Ge…
Negative powers differentiation | Derivative rules | AP Calculus AB | Khan Academy
[Voiceover] So we have the function g of x, which is equal to 2/x to the third minus 1/x squared. And what I wanna do in this video, is I wanna find what g prime of x is and then I also wanna evaluate that at x equal two. So I wanna figure that out. And…