yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
WIN Videogames BY KISSING??!! And 10 More Awesome FLASH GAMES.
[Music] Yesterday, everyone was talking about a new game controlled by kissy. One person has a magnet stuck on their tongue, and the position and speed of their tongue controls the direction and speed of a bowling ball. But until and if that game hits sto…
Telling time to the nearest minute: unlabeled clock | Math | 3rd grade | Khan Academy
Let’s look at the clock and see what time is shown. The clock has two hands: this first shorter one, which represents the hours, and then there’s a longer hand here that represents the minutes. So we can start with the hours. This shorter hand right here…
Save the Ocean, Save Ourselves | Sea of Hope: America's Underwater Treasures
There’s been this arc to my career in the sense that in the beginning I just wanted to make beautiful pictures. But I began more and more to see all these problems happening in the ocean. Fewer fish in the places I used to see many fish, or not as many sh…
Khanmigo is now available to the public (US only)| Personalized AI tutor & teaching assistant
Hi everyone, Sal Khan here, and I’m excited to announce that Khan Migo, our generative AI-powered tutor on Khan Academy, is now generally available! This is especially powerful as we go into back to school. If you have Khan Migo, your student has it on th…
the moon is leaving
If you applied a coat of paint to the bottom of your shoes every single day, one coat on top of the other, every morning, you would leave Earth just as quickly as our moon is leaving us. Every day, the moon moves about a tenth of a millimeter away from Ea…
Miyamoto Musashi - Protect Your Honour At All Costs
Miyamoto Musashi, one of the greatest samurai to have ever lived, believed that protecting our honour was more important than protecting our lives. In his Dokkodo, a collection of 21 principles for living a good life that he dedicated to one of his discip…