yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
$1 Trillion Joke | Market Cap (Short)
We’re gonna talk about the Apple one trillion dollar market cap and explain why this is such a silly number, and it’s actually based on false math. The problem is this formula for market cap, the math here, if you just multiply the spot and shares outstan…
Climbing Asia’s Forgotten Mountain, Part 1 | Nat Geo Live
It was harder than we anticipated and it was much, much colder. We’re a team of six people. Our goal is to determine what the highest peak in Burma is and then climb it. Like to solve this fantastic geographical mystery. It never let up, just taken down t…
Card Sharks of Vegas | Underworld, Inc.
Armed robbers can score big at the casinos, but with security being so tight, they can’t score often. But card shark Ace Face, all right, and his partner Bim have a very different approach: two-deck handheld game. Huh, yeah, that looks pretty good. Okay,…
The Next Stock Market Collapse | 6 Ways To Make Money
What’s down you guys? It’s the stock market here, and I feel like it’s about time we address a topic that’s come up a lot the other day. That would be the next stock market crash. After all, just days after Morgan Stanley warned us about a potential 15% c…
15 Experiences You Have As You Get Richer
Your journey through life grows richer as your pockets do. More money means unlocking new levels of experiences and adventures. It’s not just about having fancy stuff; it’s about the unique, amazing things you get to do and see. Here are 15 experiences yo…
Jorge Paulo Lemann on building a more equitable future in Brazil | Homeroom with Sal
Support all of you in other ways with daily class schedules to kind of approximate keeping the learning going on during the closures. Webinars for teachers and parents, and also this home room is really just a way to stay connected, talk to interesting pe…