yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
Continuity at a point | Limits and continuity | AP Calculus AB | Khan Academy
What we’re going to do in this video is come up with a more rigorous definition for continuity and the general idea of continuity. We’ve got an intuitive idea of the past; that a function is continuous at a point is if you can draw the graph of that funct…
How To Make The Perfect Bad Plan
This video is for those of you who’ve never started anything on your own but really have the edge. You feel the urge to have something you can call your own, but you just don’t know where or how to start. Well, this video is going to get you started in th…
What If Everyone JUMPED At Once?
Hey, Vsauce. Michael here. And what if every single person on Earth jumped at the exact same time? Could it cause an earthquake or would we not even be able to tell? Well, first things first, let’s talk about the Earth’s rotation. The Earth spins, that’s …
The Black Woman | Genius: MLK/X | National Geographic
Sister Betty, The Honorable Elisha Muhammad has provided an answer to the central question amongst us all: Who is the original man? The original man is the Asiatic black man, the maker, the owner, the creator of the planet Earth, god of the universe, the…
The 150 hour rule to buy an airplane.
Some people say, “Well, I want to buy an airplane. I’m going to fly 50 hours a year. I could rent it out the rest.” Your business is not to rent airplanes. You’re going to get a headache from all the costs and all the different things that are going to co…
Scaling functions introduction | Transformations of functions | Algebra 2 | Khan Academy
So this is a screenshot of Desmos. It’s an online graphing calculator. What we’re going to do is use it to understand how we can go about scaling functions, and I encourage you to go to Desmos and try it on your own, either during this video or after. Le…