yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
How to be More Confident | 5 Ways to Increase Self-Confidence
[Music] The guy: All right, what’s on the menu? Top five ways to increase confidence. Okay, all right, let’s do this. So, you might be wondering why I’m drinking coffee, even though I’m the guy who made a video about why you should stop drinking coffee o…
What Makes You a Degenerate? | Stoic Philosophy
Here is your great soul – the man who has given himself over to Fate; on the other hand, that man is a weakling and a degenerate who struggles and maligns the order of the universe and would rather reform the gods than reform himself. Imagine a society w…
James Cameron on Exploration of Deep Sea and Space | StarTalk
So it’s not just you’re interested in the oceans or space; you’ve touched and been touched by engineering and technology. There was a lot about the cameras used for Avatar, but you go farther back than that. Well, yeah, just, I just love engineering. I l…
Simple Products That Became Big Companies – Dalton Caldwell and Michael Seibel
A product that doesn’t work with lots of features is infinitely worse than a product with one feature that works. And again, like, let’s play that out. Let’s play that out. Right? Imagine if it’s like they were like, you get health care and you get benef…
Game theory worked example from A P Microeconomics
What we have here is a free response question that you might see on an AP Microeconomics type exam that deals with game theory. It tells us Bread Basket and Quick Lunch are the only two sandwich shops serving a small town, so we’re in an oligopoly situati…
Nat Geo's Aaron Huey's Most Epic Photos | National Geographic
That’s how I actually get my work. It’s not because I know how to take pictures. It’s because I only wear gold shoes when I come into the National Geographic offices. (classical music) My name’s Aaron Huey. I’m a National Geographic photographer. A lot of…