yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: Inflection points from first derivative | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told let G be a differentiable function defined over the closed interval from -6 to 6. The graph of its derivative, so they're giving the graphing the derivative of G. G prime is given below. So this isn't the graph of G; this is the graph of G prime. What is the x value of the leftmost inflection point, inflection point in the graph of G?

So they want to know the x value of the inflection points in the graph of G. In this graph, they want to know the inflection points, the x values of the inflection points in the graph of G, and we have to figure out the leftmost one.

So let me just make a little table here to think about what is happening at inflection points in our second derivative, our first derivative, and our actual function. So this is G prime prime, this is G prime, and this is our actual, I guess you could call it the original function.

So an inflection point is a point where our second derivative is switching signs. It's going from positive to negative or negative to positive. So let's consider that first scenario:

If G is going from positive to negative, what's the first derivative doing? Well, remember the second derivative is the derivative of the first derivative. So where the second derivative is positive, that means that the first derivative is increasing. So if the second derivative is going from positive to negative, that means the first derivative is going from increasing to decreasing.

From increasing to decreasing and the function itself, well, when the second derivative is positive, it means that the slope is constantly increasing, and so that means we are concave upwards.

So, concave upwards to downwards to concave downwards. But they've given us the graph of G prime, so let's focus on what are the points where G prime is going from increasing to decreasing.

So let's see, G prime is increasing, increasing, increasing, increasing, increasing at a slower rate, and then it starts decreasing. So right over there, it's going from increasing to decreasing.

Then it's decreasing, decreasing, decreasing, then it goes increasing, increasing, increasing, increasing, and then decreasing again. So that's another point where we're going from increasing to decreasing. And those are the only ones that look like we're going from increasing to decreasing.

But we're not done yet because it's not just about the second derivative going from positive to negative. It's also the other way around, anytime the second derivative is switching signs. So it's also the situation where we're going from negative to positive, or where the first derivative is going from decreasing to increasing, decreasing to increasing.

Well, let's see, we are decreasing, decreasing, decreasing, and then we're increasing. All right, so it's right there. Then we're increasing, decreasing, decreasing, decreasing, and then we're increasing. So right over there.

So these are the inflection points that I've just figured out visually. If you look at the choices, if we want to answer the original question, well, the leftmost one is that x is equal to 3.

It's x = -3. x = -1 is indeed an x value where we have an inflection point. And let's see, x = 1 is one, and so is x = 4. So they actually listed all of these as inflection points, and they just wanted the leftmost one.

More Articles

View All
Quantum Computers Explained – Limits of Human Technology
Quantum Computers Explained – Limits of Human Technology For most of our history, human technology consisted of our brains, fire, and sharp sticks. While fire and sharp sticks became power plants and nuclear weapons, the biggest upgrade has happened to o…
Tomasz Kaye: Voluntaryist and Creator of George Ought to Help [Mirror]
If we approve of state programs that redistribute wealth, we must also approve of threats of violence made against peaceful individuals, because this is how the funds are collected. On the other hand, most of us feel uncomfortable about threatening peacef…
Nat Geo's Aaron Huey's Most Epic Photos | National Geographic
That’s how I actually get my work. It’s not because I know how to take pictures. It’s because I only wear gold shoes when I come into the National Geographic offices. (classical music) My name’s Aaron Huey. I’m a National Geographic photographer. A lot of…
Amazon CEO Jeff Bezos on The David Rubenstein Show
You have become the wealthiest man in the world. It was fine being the second wealthiest person in the world; that actually worked fine. What propelled you to sell things more than books? I thought to myself, we can sell anything this way. Who came up wit…
Entering a Salmon Graveyard | The Great Human Race
Getting deeper, huh? 5,000 years ago in the Pacific Northwest, the seasonal salmon runs sustained huge populations of early humans. Oh, is that a dead fish? But this bounty was only available for a short window of time each year. Look, there’s even skin e…
The Moon
When you look at the Moon in the night sky, it might seem reasonably close, but it’s actually incredibly far away. Right over here is a scaled picture of the distance between the Earth and the Moon. Earth has a diameter of approximately 8,000 miles, while…