yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why can't you put metal in a microwave? - Aaron Slepkov


4m read
·Nov 8, 2024

American engineer Percy Spencer developed World War II RADAR technology that helped detect Nazi airplanes—but it would soon have other surprising applications. One day in 1945, Spencer was standing near a RADAR instrument called a magnetron, a device that produced high-intensity microwaves that could reflect off planes. Suddenly, he noticed that the candy bar in his pocket had melted. He exposed other things to the magnetron and, sure enough, popcorn kernels popped, and an egg—well—exploded onto a colleague. Soon after, the first microwave oven became available, operating using the very same technology.

So, how does it work? All light energy travels in waves of oscillating electric and magnetic fields. These oscillations span a range of frequencies comprising the electromagnetic spectrum. The higher the frequency, the more energetic. Gamma rays and X-rays have the highest frequencies; microwaves and radio waves, the lowest. Generally, light’s oscillating electric field exerts forces on charged particles, like the electrons in a molecule. When light encounters polar molecules, like water, it can make them rotate, as their positive and negative regions are pushed and pulled in different directions. The frequency the light is traveling at also determines how it interacts with matter. Microwaves interact strongly with the water molecules found in most foods. Essentially, they make the molecules jostle against each other, creating frictional heat.

Household microwave ovens are fitted with cavity magnetrons. When you activate a microwave oven, a heated element within the magnetron ejects electrons, and a strong magnet forces them to spiral outwards. As they pass over the magnetron’s metallic cavities, the electrons induce an oscillating charge, generating a continuous stream of electromagnetic microwaves. A metal pipe directs the microwaves into the main food compartment, where they bounce off the metal walls and penetrate a few centimeters into the food inside. When the microwaves encounter polar molecules in the food, like water, they make them vibrate at high frequencies. This can have interesting effects depending on the food's composition.

Oil and sugar absorb fewer microwaves than water, so if you microwave them alone, not much happens. But when microwaves encounter a marshmallow, they heat the moisture trapped within its gelatin-sugar matrix, making the hot air expand and the marshmallow puff. Butter is essentially a suspension of water droplets in fat. When microwaved, the water rapidly vaporizes, making the butter melt quickly—and sometimes, a bit violently. So microwaves heat food molecules mechanically, through friction—but they don't alter them chemically. Soup heated in the microwave is molecularly indistinguishable from soup heated using a stove or oven.

The term “microwave radiation” can be alarming. But in physics, radiation simply describes any transfer of energy across a gap. High frequency, ionizing radiation may be harmful because it can strip electrons from molecules, including DNA. However, microwaves aren’t energetic enough to alter chemical bonds. And microwave ovens are designed to prevent leakage—for safety and efficiency’s sake. Nonetheless, to totally limit exposure, experts recommend simply standing a few feet away when a microwave oven is on.

Microwaving metal is dangerous, though, right? Well, it depends. Metals are conductors, meaning their electrons are loosely bound to their atoms and move freely in response to electric fields. Instead of absorbing microwave radiation, the metal’s electrons concentrate on the surface, leading to high voltages at sharp edges, corners, and small gaps. This includes areas between the creases on a sheet of aluminum foil, the prongs of a fork, or a metal object and the microwave oven’s metal walls. Sometimes, voltages get high enough to strip electrons from the surrounding air molecules. This electrically charged gas, or plasma, may then form lightning-like sparks and grow as it absorbs more microwaves.

Once the oven is turned off, the plasma dissipates. But not all metal objects spark in the microwave—though they might make things cook a little unevenly. In fact, a lot of microwavable packaging takes advantage of this, using a thin metal coating to crisp the food’s surface. And overall, as long as it doesn't approach the oven's walls, leaving a metal spoon in a microwaving bowl of soup should be a pretty uneventful affair. That’s just another neat benefit of cooking with RADAR.

More Articles

View All
Meet The Homeless Man Who Bought A Bugatti | TheStradman
[Applause] What’s up you guys? It’s Graham here! So a little over four years ago, right before I started making YouTube videos, I met James, also known as The Stradman, through a close friend of mine, Gordon, also known as F-Spot. We started talking cars;…
Calculating percentile | Modeling data distributions | AP Statistics | Khan Academy
The Dot Plot shows the number of hours of daily driving time for 14 school bus drivers. Each dot represents a driver. So, for example, one driver drives one hour a day, two drivers drive two hours a day, one driver drives three hours a day, and it looks l…
Charlie Munger’s Final Warning for Investors in 2024
It’s a radically different world from the world we started in. I think it’s going to get tougher. That was Charlie Munger speaking at the Berkshire Hathaway shareholders’ meeting earlier this year. I was there, sitting alongside tens of thousands of peopl…
Identifying a sample and population | Study design | AP Statistics | Khan Academy
Administrators at Riverview High School surveyed a random sample of 100 of their seniors to see how they felt about the lunch offerings at the school’s cafeteria. So, you have all of the seniors; I’m assuming there’s more than a hundred of them. Then the…
The 5 Golden Rules of Real Estate Investing
What’s up, you guys? It’s Graham here. So I’ll just get right into it. These are the five real estate investing tips to live by and keep in mind. And this is coming from somebody who owns five investment properties already and someone who’s been in real e…
Saddle points
In the last video, I talked about how if you’re trying to maximize or minimize a multivariable function, you can imagine its graph. In this case, this is just a two-variable function, and we’re looking at its graph. You want to find the spots where the ta…