yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing fractions with the same denominator | Math | 3rd grade | Khan Academy


2m read
·Nov 11, 2024

Let's compare ( \frac{2}{4} ) and ( \frac{3}{4} ). First, let's think about what these fractions mean. ( \frac{2}{4} ) means we have some whole and we've split it into four equal size pieces, and we get two of those pieces. Maybe we could think about pizza as an example. We split a pizza into four equal size pieces, and we ate two of them.

( \frac{3}{4} ) means that same whole, that same pizza, was again split into four equal size pieces, but this time what's different is we got three of the pieces. So maybe from that description, we can start to think about which one is larger. But let's also draw them to be sure that we can decide which one is larger.

So for ( \frac{2}{4} ), we're going to have a fraction that represents maybe a pizza. It's going to be divided and split into four equal size pieces. These may not be perfect lines, but they should represent four equal size pieces, and we get two of those pieces. So this represents ( \frac{2}{4} ).

For ( \frac{3}{4} ), again, we will have the same four equal size pieces, but this time we get three of the four. So one, two, three of the four pieces, and this will represent ( \frac{3}{4} ).

Now we can look at it visually and see very clearly that ( \frac{3}{4} ) is greater or takes up more space. Or we can say that ( \frac{2}{4} ) is less than ( \frac{3}{4} ). Remember, this is the less than symbol because we always want this open bigger side facing our larger number, and in this case, it's facing the second number. So we'll say ( \frac{2}{4} ) is less than ( \frac{3}{4} ). Each of these fourths is the same size, so two of them is less than three of the fourths.

Here we can try one more, but this time let's not draw the picture. Let's just think about what they mean and see if we can figure it out. So for ( \frac{5}{8} ), we have a whole and it's been divided into eight equal pieces. For ( \frac{3}{8} ), the same thing, eight equal pieces. But here in ( \frac{5}{8} ), we get five of those pieces, and in ( \frac{3}{8} ), we get three of the pieces.

So the pieces are the same size; they're eighths on both sides. These are eighths, and these are eighths. But here we have five of the eighths, and here we have three. So if the pieces are the same size, five pieces is greater than three pieces, or ( \frac{5}{8} ) is greater than ( \frac{3}{8} ).

Here, our open end, our bigger side, is still facing our bigger number, but our bigger number is first this time. So this is the greater than symbol: ( \frac{5}{8} ) is greater than ( \frac{3}{8} ).

More Articles

View All
Understanding and building phylogenetic trees | High school biology | Khan Academy
When we look at all of the living diversity around us, the natural question is, “Well, how related are the different species to each other?” If you put that into an evolutionary context, relatedness should be tied to how recently two species shared a comm…
Wave transmission | Waves | Middle school physics | Khan Academy
When we’re talking about waves, transmission is when a wave passes from a material into another one. For example, here we have the sun, 93 million miles away on average, and imagine the different materials that the light has to travel through from the sun…
A Tiny Killing Machine | Explorer
So how can this animal with such a minute brain have stereo vision, and how would you even test this? Vivic decided that the best way was to take the insect to a 3D action movie. Really, in order to see the movie, Vivic needs to make some very, very tiny …
Touring Elon Musk’s $50,000 Tiny Home
So Elon Musk just purchased this foldable home for fifty thousand dollars that could be assembled in under an hour, and they’re taking over the world. I should have a Boxable! Yeah, you do! Some prototype Boxables that’s down in South Texas. It’s an out …
Dark Energy: The Void Filler
A quick shoutout to Squarespace for sponsoring this video. In 1999, Saul Perlmutter was asking himself a question that many of us may have thought of before: will the universe exist forever, or will it have an end? Will the universe slowly expand for th…
Michael Seibel: How do you decide what to build next?
So the question is basically how do we figure out what to build next? Here’s my answer: the reason why you have a part development cycle is that you can work on multiple things. Usually, there isn’t a right answer. Usually, all of the things that you want…