yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing fractions with the same denominator | Math | 3rd grade | Khan Academy


2m read
·Nov 11, 2024

Let's compare ( \frac{2}{4} ) and ( \frac{3}{4} ). First, let's think about what these fractions mean. ( \frac{2}{4} ) means we have some whole and we've split it into four equal size pieces, and we get two of those pieces. Maybe we could think about pizza as an example. We split a pizza into four equal size pieces, and we ate two of them.

( \frac{3}{4} ) means that same whole, that same pizza, was again split into four equal size pieces, but this time what's different is we got three of the pieces. So maybe from that description, we can start to think about which one is larger. But let's also draw them to be sure that we can decide which one is larger.

So for ( \frac{2}{4} ), we're going to have a fraction that represents maybe a pizza. It's going to be divided and split into four equal size pieces. These may not be perfect lines, but they should represent four equal size pieces, and we get two of those pieces. So this represents ( \frac{2}{4} ).

For ( \frac{3}{4} ), again, we will have the same four equal size pieces, but this time we get three of the four. So one, two, three of the four pieces, and this will represent ( \frac{3}{4} ).

Now we can look at it visually and see very clearly that ( \frac{3}{4} ) is greater or takes up more space. Or we can say that ( \frac{2}{4} ) is less than ( \frac{3}{4} ). Remember, this is the less than symbol because we always want this open bigger side facing our larger number, and in this case, it's facing the second number. So we'll say ( \frac{2}{4} ) is less than ( \frac{3}{4} ). Each of these fourths is the same size, so two of them is less than three of the fourths.

Here we can try one more, but this time let's not draw the picture. Let's just think about what they mean and see if we can figure it out. So for ( \frac{5}{8} ), we have a whole and it's been divided into eight equal pieces. For ( \frac{3}{8} ), the same thing, eight equal pieces. But here in ( \frac{5}{8} ), we get five of those pieces, and in ( \frac{3}{8} ), we get three of the pieces.

So the pieces are the same size; they're eighths on both sides. These are eighths, and these are eighths. But here we have five of the eighths, and here we have three. So if the pieces are the same size, five pieces is greater than three pieces, or ( \frac{5}{8} ) is greater than ( \frac{3}{8} ).

Here, our open end, our bigger side, is still facing our bigger number, but our bigger number is first this time. So this is the greater than symbol: ( \frac{5}{8} ) is greater than ( \frac{3}{8} ).

More Articles

View All
Death | What Staring into the Abyss Teaches Us
“What did it matter if he existed for two or for twenty years? Happiness was the fact that he had existed.” Albert Camus. It’s striking how many of us keep death at a distance. It’s like our collective taboo; we’re hiding it, covering it with life’s supe…
Khan Academy’s 100&Change proposal: World-class diplomas for anyone, anywhere
Hi, I’m Sal Khan, founder of the Khan Academy. We’re a not-for-profit with a mission of providing a free, world-class education for anyone, anywhere. There are tens of millions of people learning on Khan Academy who want to prove what they know, who want…
Big takeaways from the Civil War
We’ve been discussing the American Civil War, which lasted from 1861 until 1865. It was the deadliest conflict in all of American history, in which about 620,000 Americans lost their lives. We briefly went over the very end of the war, as Grant caught up …
Photoperiodism | Plant Biology | Khan Academy
So one question that biologists have long asked is: how do plants know what to do at different times of the year? One mechanism by which they know, kind of, you could say what time of year it is, is through photoperiodism. “Photo” for light and then “peri…
I Need Your Help!
That echo, that is a nasty echo. Anyway, um, hello! Welcome to New Money HQ. This is pretty exciting, isn’t it? Um, so as you can see, I am currently in quite an empty office space and, uh, well, this is one of the parts of, uh, the expansion of the chann…
Magic Without Lies | Cosmos: Possible Worlds
In the quantum universe, there’s an undiscovered frontier where the laws of our world give way to the ones that apply on the tiniest scale we know. They’re divorced from our everyday experience. How can you think about a world that has different rules tha…