yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing unbounded limits: rational function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let f of x be equal to negative 1 over x minus 1 squared. Select the correct description of the one-sided limits of f at x equals 1.

And so we can see we have a bunch of choices where we're approaching x from the right-hand side and we're approaching x from the left-hand side. We're trying to figure out do we get unbounded on either of those in the positive direction towards positive infinity or negative infinity.

There's a couple of ways to tackle it. The most straightforward, well, let's just consider each of these separately. We could think about the limit of f of x as x approaches 1 from the positive direction and the limit of f of x as x approaches 1 from the left-hand side.

This is from the right-hand side, this is from the left-hand side. So I'm just going to make a table and try out some values as we approach one from the different sides.

x | f of x

And I'll do the same thing over here. So we are going to have our x and have our f of x. If we approach 1 from the right-hand side here, that would be approaching 1 from above. So we could try 1.1, we could try 1.01.

Now, f of 1.1 is negative 1 over 1.1 minus 1 squared.

So see, this denominator here is going to be 0.1 squared, so this is going to be 0.01. And so this is going to be negative 100.

So let me just write that down; that's going to be negative 100. If x is 1.01, well, this is going to be negative 1 over 1.01 minus 1 squared.

Well, in this denominator, this is going to be 0.01 squared, which is the same thing as 0.0001, one ten-thousandth. And so negative 1 over one ten-thousandth is going to be negative ten thousand.

So let's just write that down: negative 10,000. This looks like, as we get closer—because notice as I'm going here, I am approaching 1 from the positive direction—I'm getting closer and closer to 1 from above and I'm going unbounded towards negative infinity.

So this looks like it is negative infinity. Now we could do the same thing from the left-hand side. I could do 0.9, I could do 0.99.

Now, 0.9 is actually also going to get me negative 100 because 0.9 minus 1 is going to be negative 0.1, but then when you square it, the negative goes away. So you get 0.01, and then 1 divided by that is 100, but you have the negative, so this is also negative 100.

If you don't follow those calculations, I'll do it. Let me do it one more time just so you see it clearly. There's going to be negative 1 over, so now I'm doing x is equal to 0.99.

So I'm getting even closer to 1, but I'm approaching from below, from the left-hand side. So this is going to be 0.99 minus 1 squared.

Well, 0.99 minus 1 is going to be negative 0.01 squared. Well, when you square it, the negative goes away, and you're left with one ten-thousandth.

So this is going to be 0.0001. And so when you evaluate this, you get negative 10,000.

So in either case, regardless of which direction we approach from, we are approaching negative infinity. So that is this choice right over here.

Now, there are other ways you could have tackled this. If you just look at kind of the structure of this expression here, the numerator is a constant, so that's clearly always going to be positive.

Let's ignore this negative for the time being; that negative is out front. This numerator, this 1, is always going to be positive.

Down here, we're taking the limit as x equals 1. Well, this becomes 0, and the whole expression becomes undefined.

But as we approach 1, x minus 1 could be positive or negative, as we see over here. But then when we square it, this is going to become positive as well.

So the denominator is going to be positive for any x other than one. So positive divided by positive is going to be positive, but then you have a negative out front.

So this thing is going to be negative for any x other than one, and it's actually not defined at x equals one.

And so you could, from that, deduce, well okay then we can only go to negative infinity. There's actually no way to get positive values for this function.

More Articles

View All
Amy Buechler and Michael Seibel on Founder Coaching and Having Hard Conversations
Alright guys, welcome to the podcast. Thanks Frank, how’s it going? Great! Good! Amy, you are a founder coach. I think a lot of people don’t know what coaching actually is, so maybe you could explain it? Yeah, that’s actually a great question because wha…
The Berkshire Empire: Hidden Truth of Buffett and Munger's Success | 2023 Documentary
After winning a hostile takeover battle against Berkshire Hathaway, Buffett now fully controls the textile company. But he quickly realizes that he has made a grave mistake. Part of the partnership was buying what looked like cheap stocks; Berkshire Hatha…
Mega Man's GUTS!!! Mind Blow 7
A woolly mammoth cloned in 5 years and let me get a Big Mac and a life jacket. Vsauce, Kevin here. This is mind-blowing! Oh cool, it’s Mega Man’s gut. These anatomical statues show the innards of some of your favorite characters including Yoshi and victo…
Why Are Astronauts Weightless?
[Applause] [Music] Have you wondered what it would be like to be an astronaut floating around in the space station? But why are the astronauts floating? I’m here at the PowerHouse Museum in Sydney to find out if anyone knows the answer. Why are they floa…
In Your Face - Mind Field (Ep 7)
If I asked you to show me a picture of your mother, you wouldn’t show me a, uh, closeup shot of her elbow. But you could, and you’d be right. That would be a photo of her, but it wouldn’t feel right because it’s not her face. That’s how important faces ar…
The Face of the Revolution | Uncensored with Michael Ware
MICHAEL WARE (VOICEOVER): In Olympic boxing, Cuba is a heavyweight. The nation’s pride often rests upon success in the ring. Oh, my god. MICHAEL WARE (VOICEOVER): And few have known as much success as the man who has just walked in. What an honor to meet…