yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Analyzing unbounded limits: rational function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let f of x be equal to negative 1 over x minus 1 squared. Select the correct description of the one-sided limits of f at x equals 1.

And so we can see we have a bunch of choices where we're approaching x from the right-hand side and we're approaching x from the left-hand side. We're trying to figure out do we get unbounded on either of those in the positive direction towards positive infinity or negative infinity.

There's a couple of ways to tackle it. The most straightforward, well, let's just consider each of these separately. We could think about the limit of f of x as x approaches 1 from the positive direction and the limit of f of x as x approaches 1 from the left-hand side.

This is from the right-hand side, this is from the left-hand side. So I'm just going to make a table and try out some values as we approach one from the different sides.

x | f of x

And I'll do the same thing over here. So we are going to have our x and have our f of x. If we approach 1 from the right-hand side here, that would be approaching 1 from above. So we could try 1.1, we could try 1.01.

Now, f of 1.1 is negative 1 over 1.1 minus 1 squared.

So see, this denominator here is going to be 0.1 squared, so this is going to be 0.01. And so this is going to be negative 100.

So let me just write that down; that's going to be negative 100. If x is 1.01, well, this is going to be negative 1 over 1.01 minus 1 squared.

Well, in this denominator, this is going to be 0.01 squared, which is the same thing as 0.0001, one ten-thousandth. And so negative 1 over one ten-thousandth is going to be negative ten thousand.

So let's just write that down: negative 10,000. This looks like, as we get closer—because notice as I'm going here, I am approaching 1 from the positive direction—I'm getting closer and closer to 1 from above and I'm going unbounded towards negative infinity.

So this looks like it is negative infinity. Now we could do the same thing from the left-hand side. I could do 0.9, I could do 0.99.

Now, 0.9 is actually also going to get me negative 100 because 0.9 minus 1 is going to be negative 0.1, but then when you square it, the negative goes away. So you get 0.01, and then 1 divided by that is 100, but you have the negative, so this is also negative 100.

If you don't follow those calculations, I'll do it. Let me do it one more time just so you see it clearly. There's going to be negative 1 over, so now I'm doing x is equal to 0.99.

So I'm getting even closer to 1, but I'm approaching from below, from the left-hand side. So this is going to be 0.99 minus 1 squared.

Well, 0.99 minus 1 is going to be negative 0.01 squared. Well, when you square it, the negative goes away, and you're left with one ten-thousandth.

So this is going to be 0.0001. And so when you evaluate this, you get negative 10,000.

So in either case, regardless of which direction we approach from, we are approaching negative infinity. So that is this choice right over here.

Now, there are other ways you could have tackled this. If you just look at kind of the structure of this expression here, the numerator is a constant, so that's clearly always going to be positive.

Let's ignore this negative for the time being; that negative is out front. This numerator, this 1, is always going to be positive.

Down here, we're taking the limit as x equals 1. Well, this becomes 0, and the whole expression becomes undefined.

But as we approach 1, x minus 1 could be positive or negative, as we see over here. But then when we square it, this is going to become positive as well.

So the denominator is going to be positive for any x other than one. So positive divided by positive is going to be positive, but then you have a negative out front.

So this thing is going to be negative for any x other than one, and it's actually not defined at x equals one.

And so you could, from that, deduce, well okay then we can only go to negative infinity. There's actually no way to get positive values for this function.

More Articles

View All
Down on Luck | Wicked Tuna: Outer Banks
Perfect time to catch the blue fin. Oh, oh, there’s some tones over there! They’re coming this way. Looks like a pretty good pot of them too. Dear Jesus, please God, let us get a fish right now. We are desperate to get some more meat on the boat. We’ve o…
Conservation of momentum and energy example
[Instructor] Blocks A and B are pressed together with a spring between them. When the blocks are released from rest, the spring pushes the blocks apart so that the 0.75 kilogram block A moves up the 30 degree ramp to the left and the 0.25 kilogram block B…
Triangle missing side example
The triangle shown below has an area of 75 square units. Find the missing side, so pause the video and see if you can find the length of this missing side. All right, now let’s work through this together. They give us the area; they give us this side rig…
BEST of MARGIN CALL #4 - Senior Partners Emergency Meeting
Please, sit down. Welcome, everyone. I must apologize for dragging you all here at such an uncommon hour. But from what I’ve been told, this matter needs to be dealt with urgently. So urgently, in fact, it probably should have been addressed weeks ago. Bu…
The One Ring Explained
These books are all about this ring. How it’s found and [spoiler alert] how it’s destroyed. While Tolkien built the largest and most consistent fictional universe, he sure didn’t mind being vague at times. So, if you finished the story and then thought: w…
Earth 101 | National Geographic
[Narrator] Earth, the only planet known to maintain life. A product of scientific phenomena and sheer chance. This blue speck in space holds the past, present, and future of our very existence. (instrumental music) Approximately 4.5 billion years ago, the…