yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to integral calculus | Accumulation and Riemann sums | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

So I have a curve here that represents ( y ) is equal to ( f(x) ), and there's a classic problem that mathematicians have long thought about: how do we find the area under this curve, maybe under the curve and above the x-axis, and let's say between two boundaries, let's say between ( x ) is equal to ( a ) and ( x ) is equal to ( b )?

So let me draw these boundaries right over here. That's our left boundary; this is our right boundary, and we want to think about this area right over here. Well, without calculus, you can actually get better and better approximations for it. How would you do it? Well, you could divide this section into a bunch of ( \Delta x )'s that go from ( a ) to ( b ). They could be equal sections or not, but let's just say for the sake of visualizations, I'm going to draw roughly equal sections here.

So that's the first, that's the second, this is the third, this is the fourth, this is the fifth, and then we have the sixth right over here. And so, each of these, this is ( \Delta x ); let's just call that ( \Delta x_1 ). This is ( \Delta x_2 ); this width right over here is ( \Delta x_3 ), all the way to ( \Delta x_n ). I'll try to be general here.

And so, what we could do is let's try to sum up the area of the rectangles defined here. And we could make the height—maybe we make the height based on the value of the function at the right bound. It doesn't have to be; it could be the value of the function someplace in this ( \Delta x ), but that's one solution. We're going to go into a lot more depth into it in future videos.

And so, we do that, and so now we have an approximation. Or we could say, look, the area of each of these rectangles are going to be ( f(x_i) ) or maybe ( x_i ) is the right boundary, the way I've drawn it, times ( \Delta x_i )—that's each of these rectangles. And then we can sum them up, and that would give us an approximation for the area.

But as long as we use a finite number, we might say, well, we can always get better by making our ( \Delta x ) smaller and then by having more depth, more of these rectangles, or get to a situation here. We're going from ( i ) is equal to 1 to ( i ) is equal to ( n ).

But what happens is ( \Delta x ) gets thinner and thinner and thinner, and we have ( n ) gets larger and larger and larger as ( \Delta x ) gets infinitesimally small. And then, as ( n ) approaches infinity— and so you're probably sensing something—then maybe we could think about the limit. We could say, as ( n ) approaches infinity, or the limit as ( \Delta x ) becomes very, very, very, very small.

And this notion of getting better and better approximations as we take the limit as ( n ) approaches infinity, this is the core idea of integral calculus. And it's called integral calculus because the central operation we use—the summing up of an infinite number of infinitesimally thin things—is one way to visualize it.

This is going to be the integral—in this case, from ( a ) to ( b )—and we're going to learn a lot more depth. In this case, it is a definite integral of ( f(x) , dx ), but you can already see the parallels here. You can view the integral sign as like a sigma notation, as a summation sign, but instead of taking the sum of a discrete number of things, you're taking the sum of an infinite, an infinite number—infinitely thin things.

Instead of ( \Delta x ), you now have ( dx )—infinitesimally small things. And this is the notion of an integral. So this right over here is an integral. Now, what makes it interesting to calculus is it's using this notion of a limit. But what makes it even more powerful is it's connected to the notion of a derivative, which is one of these beautiful things in mathematics.

As we will see in the fundamental theorem of calculus, that integration—the notion of an integral—is closely tied, closely to the notion of a derivative. In fact, the notion of an antiderivative. In differential calculus, we looked at the problem of, hey, if I have some function, I can take its derivative, and I can get the derivative of the function.

In integral calculus, we're going to be doing a lot of, well, what if we start with a derivative? Can we figure out, through integration, can we figure out its antiderivative or the function whose derivative it is? As we will see, all of these are related: the idea of the area under a curve, the idea of a limit of summing an infinite number of infinitely thin things, and the notion of an antiderivative. They all come together in our journey in integral calculus.

More Articles

View All
Basic derivative rules: find the error | Derivative rules | AP Calculus AB | Khan Academy
So we have two examples here of someone trying to find the derivative of an expression. On the left-hand side, it says Avery tried to find the derivative of 7 - 5x using basic differentiation rules; here is her work. On the right-hand side, it says Hann…
Photographing the Wild Wolves of Yellowstone | Exposure
In Rogard Kipling’s The Jungle Book, he has a quote that says, “For the strength of the pack is the wolf, and the strength of the wolf is the pack.” Yellowstone lives and breathes wolves. In the last 20 years, I wanted to photograph them and bring that to…
Safari Live - Day 182 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Good afternoon ladies and gentlemen, welcome to another Sunday sunset safari here with us in Duma in the Sabi Sands. It is …
How to Launch a Nuclear Missile
During the Cold War, the US and the Soviet Union had to build underground silos to house nuclear missiles that could be launched at a few minutes notice. Now, one of the technical challenges they had to overcome that you might not think of is acoustics. L…
Missing Dial Trailer | National Geographic
You don’t know heartbreak until you’re running through the jungle, yelling for your son’s name. “Roben! Oh, that’s my son, chip off the old block!” He emailed us right before he headed into the jungle. “It should be difficult to get lost forever.” What t…
How can a private jet make you money?
Can I have two planes, one 420 and then one 48? So you want one airplane that goes from London to Dubai and one airplane that does basically Western Europe? Yeah, my father runs the business. I’m glad that he let me do this dealing. How many hours do you…