yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Upturning Tornadoes | Explorers in the Field


3m read
·Nov 11, 2024

Okay, 23:33, 21 coming straight for us. Oh my gosh! As a longtime storm researcher and storm chaser, I'm very interested in the dynamics of the formation of some of the strongest storms on earth.

[Music] [Music]

My name is Anton Simon. I'm an atmospheric and environmental scientist and National Geographic Explorer. Something about the age of eight, I’d go to the library by myself and take out all the books on things that fascinated me, reading everything I could.

What fascinated me back then? Things like mountaineering, great big storms, volcanoes. Guess what? All these years later, look at what I'm doing! It's not a surprise. I've had to confront things that used to be childhood fears. I've always been terrified of heights, even to the present day. But I can climb mountains because I've learned to deal with it.

Similarly, I used to be quite terrified of storms. Perhaps what that fear comes from is a fascination, and that fascination compels you to want to understand, you know, what it is and why they are so scary.

A tornado is a rapidly rotating column of air that is spawned by a much larger system: a very intense rotating thunderstorm we call a supercell. Thanks to great scientific advances, we have a very good understanding of how supercell thunderstorms form, but we don't yet have a good understanding of how tornadoes form from supercell storms. The better we can understand storm formation, the better we can predict tornadoes.

Now, we're trying to understand how a tornado forms. Number one: a layer of warm moist air near the Earth's surface flowing beneath a layer of much drier air further up. Number two: wind shear, which is the change of wind with increasing height. A buildup of heat creates atmospheric instability which drives the updraft. As the air rises rapidly, it also changes direction, introducing a twisting motion. Eventually, the rotation can later allow a tornado to form.

So, your typical tornado is not large; it's typically on the order of maybe 100 meters at the surface. However, on occasion, conditions will allow much, much larger circulations to form. The largest tornado on record, which we've studied, was the El Reno storm of 2013. El Reno, Oklahoma, the tornado grew to the largest I've mentioned ever seen anywhere in the world—more than four kilometers, just two and a half miles wide.

Working with tornadic storms took a very tragic turn in 2013 when the El Reno storm occurred, and I lost my former research teammates. Unfortunately, his car was overtaken by the tornado, and three people were killed. So, we went through a personal tragedy: the loss of great friends and colleagues.

But we've taken that very, very sad episode, recognizing an opportunity in that to actually advance tornado science by better understanding the storm that caused the disaster. So, we reached out on social media. We did what we call crowdsourcing, which is going on social media and requesting, "Hey, were you there? Did you see something interesting? Would you be willing to share it with us?"

Then from that, this huge discovery comes forth. We were able to answer this long-held question: Did tornadoes develop from the cloud downward or from the ground outward? The answer, at least in the case of the world's largest tornado, unquestionably, it formed from the ground and grew upward into the parent thundercloud.

That was a really big discovery that we never expected. Better understanding of storms ultimately benefits the public. If we can improve warnings and that type of thing, the other reason that I'm doing it is because I simply love it. There’s an enormous personal reward for doing it, and I'll never pretend that I need another reason other than that to do this.

Congratulations, team! Long time coming. I hope it didn't hurt anyone. That was so beautiful.

[Music]

More Articles

View All
Introduction to one-dimensional motion with calculus | AP Calculus AB | Khan Academy
What we’re going to do in this video is start to think about how we describe position in one dimension as a function of time. So we could say our position, and we’re going to think about position on the x-axis as a function of time. We could define it by…
STOICISM | How Epictetus Keeps Calm
Even though they followed the same philosophy, Marcus Aurelius was an emperor and Epictetus was a slave. The fact that someone from the lowest class became one of the greatest Stoic philosophers indicates that Stoicism isn’t just for the elite: it’s for e…
Dominoes - HARDCORE Mode - Smarter Every Day 182
Okay, let’s just get this out there right now. I know this is weird. You probably watch this channel because you want to see slow motion phenomenon of like bullets hitting stuff, and fracture mechanics, and water drops bouncing, and animals squirting thin…
What is Beautiful Deleveraging?
A number of people asked me, “What is a beautiful deleveraging?” Well, first let me start with what is the deleveraging. Sometimes there’s too much debt burden, which also means that somebody’s holding too many debt assets and they’re not going to get pai…
Howard Marks: The BIGGEST Investment Opportunity in 40 Years
53 years in your investing career, there have been three sea changes, and we are in one of them. What does that mean? Howard Marks, he is a billionaire and one of the most highly respected investors in the world. Marks has been investing for over 50 years…
What language shows cause and effect? | Reading | Khan Academy
Hello readers! Once upon a time, in the previous century, there lived a cartoonist and engineer named Rube Goldberg, who became well known for his drawings of wacky, over-complicated machines. This is one such machine: the self-operating napkin. You see h…