yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Upturning Tornadoes | Explorers in the Field


3m read
·Nov 11, 2024

Okay, 23:33, 21 coming straight for us. Oh my gosh! As a longtime storm researcher and storm chaser, I'm very interested in the dynamics of the formation of some of the strongest storms on earth.

[Music] [Music]

My name is Anton Simon. I'm an atmospheric and environmental scientist and National Geographic Explorer. Something about the age of eight, I’d go to the library by myself and take out all the books on things that fascinated me, reading everything I could.

What fascinated me back then? Things like mountaineering, great big storms, volcanoes. Guess what? All these years later, look at what I'm doing! It's not a surprise. I've had to confront things that used to be childhood fears. I've always been terrified of heights, even to the present day. But I can climb mountains because I've learned to deal with it.

Similarly, I used to be quite terrified of storms. Perhaps what that fear comes from is a fascination, and that fascination compels you to want to understand, you know, what it is and why they are so scary.

A tornado is a rapidly rotating column of air that is spawned by a much larger system: a very intense rotating thunderstorm we call a supercell. Thanks to great scientific advances, we have a very good understanding of how supercell thunderstorms form, but we don't yet have a good understanding of how tornadoes form from supercell storms. The better we can understand storm formation, the better we can predict tornadoes.

Now, we're trying to understand how a tornado forms. Number one: a layer of warm moist air near the Earth's surface flowing beneath a layer of much drier air further up. Number two: wind shear, which is the change of wind with increasing height. A buildup of heat creates atmospheric instability which drives the updraft. As the air rises rapidly, it also changes direction, introducing a twisting motion. Eventually, the rotation can later allow a tornado to form.

So, your typical tornado is not large; it's typically on the order of maybe 100 meters at the surface. However, on occasion, conditions will allow much, much larger circulations to form. The largest tornado on record, which we've studied, was the El Reno storm of 2013. El Reno, Oklahoma, the tornado grew to the largest I've mentioned ever seen anywhere in the world—more than four kilometers, just two and a half miles wide.

Working with tornadic storms took a very tragic turn in 2013 when the El Reno storm occurred, and I lost my former research teammates. Unfortunately, his car was overtaken by the tornado, and three people were killed. So, we went through a personal tragedy: the loss of great friends and colleagues.

But we've taken that very, very sad episode, recognizing an opportunity in that to actually advance tornado science by better understanding the storm that caused the disaster. So, we reached out on social media. We did what we call crowdsourcing, which is going on social media and requesting, "Hey, were you there? Did you see something interesting? Would you be willing to share it with us?"

Then from that, this huge discovery comes forth. We were able to answer this long-held question: Did tornadoes develop from the cloud downward or from the ground outward? The answer, at least in the case of the world's largest tornado, unquestionably, it formed from the ground and grew upward into the parent thundercloud.

That was a really big discovery that we never expected. Better understanding of storms ultimately benefits the public. If we can improve warnings and that type of thing, the other reason that I'm doing it is because I simply love it. There’s an enormous personal reward for doing it, and I'll never pretend that I need another reason other than that to do this.

Congratulations, team! Long time coming. I hope it didn't hurt anyone. That was so beautiful.

[Music]

More Articles

View All
Female Founders Conference - Mountain View
Right now that you all know each other, I’d like to introduce our first speaker. Okay, I would like to welcome our first speaker, Phaedra Ellis Lumpkins, who’s the founder and CEO of Promise. Now, Promise went through the winter 2018 batch of YC and is wo…
How much money you actually need..
Money. Our lives revolve around it. We all want it. We know we all want it. Most of it doesn’t even exist beyond the heavy-duty servers of some bank, and yet the pursuit continues for this elusive thing. Despite its presence in everyday life, despite the …
Fire in ZERO-G!!
I’m about to experience weightlessness for the first time. Oh my god! Oh my god that is so strange. Oh my god this is totally freaky; this is way better than I expected. I’m just gonna say that right now. Um I’m going up to the ceiling, and here we are. I…
Le Châtelier's principle | Reaction rates and equilibrium | High school chemistry | Khan Academy
Let’s imagine a reaction that is in equilibrium: A plus B can react to form C plus D, or you could go the other way around. C plus D could react to form A plus B. We assume that they’ve all been hanging around long enough for this to be in equilibrium, so…
Ireland’s Underwater World | National Geographic
[Music] [Applause] [Music] The first time I saw it, I just thought, “Oh, how my father would have loved this.” Growing up, I was mesmerized by Cousteau films from the underwater world, and I thought, “Well, that couldn’t be Ireland; that must be some exot…
Inside an Inspiring School in India That Prepares Blind Youth for Life | National Geographic
[Music] [Music] When the doctor told our parents that I’m blind, first of all, they did not believe that I’m blind. My mother left. [Music] Me. If there were not this school, the students would wither away. They live their life without dignity because bak…