yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Upturning Tornadoes | Explorers in the Field


3m read
·Nov 11, 2024

Okay, 23:33, 21 coming straight for us. Oh my gosh! As a longtime storm researcher and storm chaser, I'm very interested in the dynamics of the formation of some of the strongest storms on earth.

[Music] [Music]

My name is Anton Simon. I'm an atmospheric and environmental scientist and National Geographic Explorer. Something about the age of eight, I’d go to the library by myself and take out all the books on things that fascinated me, reading everything I could.

What fascinated me back then? Things like mountaineering, great big storms, volcanoes. Guess what? All these years later, look at what I'm doing! It's not a surprise. I've had to confront things that used to be childhood fears. I've always been terrified of heights, even to the present day. But I can climb mountains because I've learned to deal with it.

Similarly, I used to be quite terrified of storms. Perhaps what that fear comes from is a fascination, and that fascination compels you to want to understand, you know, what it is and why they are so scary.

A tornado is a rapidly rotating column of air that is spawned by a much larger system: a very intense rotating thunderstorm we call a supercell. Thanks to great scientific advances, we have a very good understanding of how supercell thunderstorms form, but we don't yet have a good understanding of how tornadoes form from supercell storms. The better we can understand storm formation, the better we can predict tornadoes.

Now, we're trying to understand how a tornado forms. Number one: a layer of warm moist air near the Earth's surface flowing beneath a layer of much drier air further up. Number two: wind shear, which is the change of wind with increasing height. A buildup of heat creates atmospheric instability which drives the updraft. As the air rises rapidly, it also changes direction, introducing a twisting motion. Eventually, the rotation can later allow a tornado to form.

So, your typical tornado is not large; it's typically on the order of maybe 100 meters at the surface. However, on occasion, conditions will allow much, much larger circulations to form. The largest tornado on record, which we've studied, was the El Reno storm of 2013. El Reno, Oklahoma, the tornado grew to the largest I've mentioned ever seen anywhere in the world—more than four kilometers, just two and a half miles wide.

Working with tornadic storms took a very tragic turn in 2013 when the El Reno storm occurred, and I lost my former research teammates. Unfortunately, his car was overtaken by the tornado, and three people were killed. So, we went through a personal tragedy: the loss of great friends and colleagues.

But we've taken that very, very sad episode, recognizing an opportunity in that to actually advance tornado science by better understanding the storm that caused the disaster. So, we reached out on social media. We did what we call crowdsourcing, which is going on social media and requesting, "Hey, were you there? Did you see something interesting? Would you be willing to share it with us?"

Then from that, this huge discovery comes forth. We were able to answer this long-held question: Did tornadoes develop from the cloud downward or from the ground outward? The answer, at least in the case of the world's largest tornado, unquestionably, it formed from the ground and grew upward into the parent thundercloud.

That was a really big discovery that we never expected. Better understanding of storms ultimately benefits the public. If we can improve warnings and that type of thing, the other reason that I'm doing it is because I simply love it. There’s an enormous personal reward for doing it, and I'll never pretend that I need another reason other than that to do this.

Congratulations, team! Long time coming. I hope it didn't hurt anyone. That was so beautiful.

[Music]

More Articles

View All
Biases in algorithms | Intro to CS - Python | Khan Academy
Algorithms increasingly control many areas of our everyday lives, from loan applications to dating apps to hospital waiting lists. As responsible consumers and now creators of algorithms, we need to think critically about how the success of an algorithm g…
Remote Learning Best Practices from a Cyber School Teacher
Hi everyone, this is Jeremy Shifting at Khan Academy. Happy Monday! I hope you had a restful weekend—or at least as restful as we can get under these circumstances. Um, I want to thank you for joining us earlier this week for a great conversation with Mar…
Sarah Chou on Finding Product-Market Fit in the Education Industry - at YC Edtech Night
Hi everyone! Really, really nice to meet you. It’s so exciting to see—I mean, yeah, this is a lot of companies. This is really exciting. So, I am the CEO and co-founder of Informed K12. We did recently go through a name change, so we were formerly Chalk S…
What is mastery learning?
[Narrator] Have you ever really tried to learn something and you just couldn’t? It can make you feel like you’re not so smart, right? Well, it’s not your fault and it’s not your teacher’s fault, it’s just our traditional approach to learning. We go thro…
THE FEDERAL RESERVE JUST FLIPPED | Major Changes Explained
What’s up guys, it’s Graham here. So this is big. After more than a year of patiently waiting, the Federal Reserve has just officially paused their rate hikes for the first time since March of 2022, marking the beginning of a brand new market cycle that’s…
Lesson Planning with Khanmigo
This is Conmigo, an AI-powered guide designed to help all students learn. Kanmigo is not just for students; teachers can use Conmigo too by toggling from student mode to teacher mode. Once in teacher mode, Conmigo transforms into the teaching assistant yo…