yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Upturning Tornadoes | Explorers in the Field


3m read
·Nov 11, 2024

Okay, 23:33, 21 coming straight for us. Oh my gosh! As a longtime storm researcher and storm chaser, I'm very interested in the dynamics of the formation of some of the strongest storms on earth.

[Music] [Music]

My name is Anton Simon. I'm an atmospheric and environmental scientist and National Geographic Explorer. Something about the age of eight, I’d go to the library by myself and take out all the books on things that fascinated me, reading everything I could.

What fascinated me back then? Things like mountaineering, great big storms, volcanoes. Guess what? All these years later, look at what I'm doing! It's not a surprise. I've had to confront things that used to be childhood fears. I've always been terrified of heights, even to the present day. But I can climb mountains because I've learned to deal with it.

Similarly, I used to be quite terrified of storms. Perhaps what that fear comes from is a fascination, and that fascination compels you to want to understand, you know, what it is and why they are so scary.

A tornado is a rapidly rotating column of air that is spawned by a much larger system: a very intense rotating thunderstorm we call a supercell. Thanks to great scientific advances, we have a very good understanding of how supercell thunderstorms form, but we don't yet have a good understanding of how tornadoes form from supercell storms. The better we can understand storm formation, the better we can predict tornadoes.

Now, we're trying to understand how a tornado forms. Number one: a layer of warm moist air near the Earth's surface flowing beneath a layer of much drier air further up. Number two: wind shear, which is the change of wind with increasing height. A buildup of heat creates atmospheric instability which drives the updraft. As the air rises rapidly, it also changes direction, introducing a twisting motion. Eventually, the rotation can later allow a tornado to form.

So, your typical tornado is not large; it's typically on the order of maybe 100 meters at the surface. However, on occasion, conditions will allow much, much larger circulations to form. The largest tornado on record, which we've studied, was the El Reno storm of 2013. El Reno, Oklahoma, the tornado grew to the largest I've mentioned ever seen anywhere in the world—more than four kilometers, just two and a half miles wide.

Working with tornadic storms took a very tragic turn in 2013 when the El Reno storm occurred, and I lost my former research teammates. Unfortunately, his car was overtaken by the tornado, and three people were killed. So, we went through a personal tragedy: the loss of great friends and colleagues.

But we've taken that very, very sad episode, recognizing an opportunity in that to actually advance tornado science by better understanding the storm that caused the disaster. So, we reached out on social media. We did what we call crowdsourcing, which is going on social media and requesting, "Hey, were you there? Did you see something interesting? Would you be willing to share it with us?"

Then from that, this huge discovery comes forth. We were able to answer this long-held question: Did tornadoes develop from the cloud downward or from the ground outward? The answer, at least in the case of the world's largest tornado, unquestionably, it formed from the ground and grew upward into the parent thundercloud.

That was a really big discovery that we never expected. Better understanding of storms ultimately benefits the public. If we can improve warnings and that type of thing, the other reason that I'm doing it is because I simply love it. There’s an enormous personal reward for doing it, and I'll never pretend that I need another reason other than that to do this.

Congratulations, team! Long time coming. I hope it didn't hurt anyone. That was so beautiful.

[Music]

More Articles

View All
Heating curve for water | Thermodynamics | AP Chemistry | Khan Academy
Let’s look at the heating curve for water. A heating curve has temperature on the y-axis, in this case, we have it in degrees Celsius, and heat added on the x-axis; let’s say it’s in kilojoules. Let’s say we have 18.0 grams of ice, and our goal is to cal…
Warren Buffett Interview - India
For the first time in India and exclusively in NDTV Studios, the man who is better than any other at making money and giving it away, Business School shooters, please welcome Warren Buffett. [Music] Well, there are times in your life when you are really…
15 Experiences You Have As You Get Richer
Your journey through life grows richer as your pockets do. More money means unlocking new levels of experiences and adventures. It’s not just about having fancy stuff; it’s about the unique, amazing things you get to do and see. Here are 15 experiences yo…
Graphing circles from features | Mathematics II | High School Math | Khan Academy
We’re asked to graph the circle which is centered at (3, -2) and has a radius of five units. I got this exercise off of the Con Academy “Graph a Circle According to Its Features” exercise. It’s a pretty neat little widget here because what I can do is I c…
Do Technical Founders Need Business Co-Founders?
Oh yeah, well Michael, I could go do sales. That’s not hard. I can definitely reply to emails. Yes, you know, I could. Well, doter, are you going to do that? [Laughter] Welcome to Dalton Plus, Michael! Today we’re going to talk about, do you need a busi…
Corn Dogs and Crushes: Teen Love at a Fair in the American South | Short Film Showcase
You either come here with somebody who has friends, or you come here to be exclusive, and you sit there and you show each other all. It’s all about being things. So, I’ll come right here to talk to girls. Some girls, I see a lot of pretty faces, pretty go…