yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Upturning Tornadoes | Explorers in the Field


3m read
·Nov 11, 2024

Okay, 23:33, 21 coming straight for us. Oh my gosh! As a longtime storm researcher and storm chaser, I'm very interested in the dynamics of the formation of some of the strongest storms on earth.

[Music] [Music]

My name is Anton Simon. I'm an atmospheric and environmental scientist and National Geographic Explorer. Something about the age of eight, I’d go to the library by myself and take out all the books on things that fascinated me, reading everything I could.

What fascinated me back then? Things like mountaineering, great big storms, volcanoes. Guess what? All these years later, look at what I'm doing! It's not a surprise. I've had to confront things that used to be childhood fears. I've always been terrified of heights, even to the present day. But I can climb mountains because I've learned to deal with it.

Similarly, I used to be quite terrified of storms. Perhaps what that fear comes from is a fascination, and that fascination compels you to want to understand, you know, what it is and why they are so scary.

A tornado is a rapidly rotating column of air that is spawned by a much larger system: a very intense rotating thunderstorm we call a supercell. Thanks to great scientific advances, we have a very good understanding of how supercell thunderstorms form, but we don't yet have a good understanding of how tornadoes form from supercell storms. The better we can understand storm formation, the better we can predict tornadoes.

Now, we're trying to understand how a tornado forms. Number one: a layer of warm moist air near the Earth's surface flowing beneath a layer of much drier air further up. Number two: wind shear, which is the change of wind with increasing height. A buildup of heat creates atmospheric instability which drives the updraft. As the air rises rapidly, it also changes direction, introducing a twisting motion. Eventually, the rotation can later allow a tornado to form.

So, your typical tornado is not large; it's typically on the order of maybe 100 meters at the surface. However, on occasion, conditions will allow much, much larger circulations to form. The largest tornado on record, which we've studied, was the El Reno storm of 2013. El Reno, Oklahoma, the tornado grew to the largest I've mentioned ever seen anywhere in the world—more than four kilometers, just two and a half miles wide.

Working with tornadic storms took a very tragic turn in 2013 when the El Reno storm occurred, and I lost my former research teammates. Unfortunately, his car was overtaken by the tornado, and three people were killed. So, we went through a personal tragedy: the loss of great friends and colleagues.

But we've taken that very, very sad episode, recognizing an opportunity in that to actually advance tornado science by better understanding the storm that caused the disaster. So, we reached out on social media. We did what we call crowdsourcing, which is going on social media and requesting, "Hey, were you there? Did you see something interesting? Would you be willing to share it with us?"

Then from that, this huge discovery comes forth. We were able to answer this long-held question: Did tornadoes develop from the cloud downward or from the ground outward? The answer, at least in the case of the world's largest tornado, unquestionably, it formed from the ground and grew upward into the parent thundercloud.

That was a really big discovery that we never expected. Better understanding of storms ultimately benefits the public. If we can improve warnings and that type of thing, the other reason that I'm doing it is because I simply love it. There’s an enormous personal reward for doing it, and I'll never pretend that I need another reason other than that to do this.

Congratulations, team! Long time coming. I hope it didn't hurt anyone. That was so beautiful.

[Music]

More Articles

View All
136 Countries Agree To Global Minimum Corporate Tax Rate!
Hey guys, welcome back to the channel! So in this video, we have some interesting news to me. I guess probably a lot of people would zone out at the thought of corporate tax rates, but to me, we have some interesting news. Because last Friday, 136 countr…
The People and Tech That Power Nat Geo | Podcast | Overheard at National Geographic
Foreign, when you think about a 135-year-old institution, you know, you might think of something that’s, you know, fussy or tradition-bound. This is Nathan Lump, he’s National Geographic’s editor-in-chief, the 11th person to lead this magazine, and nowada…
Cindy Mi and Qi Lu Share Advice for Entrepreneurs Building Global Companies
Hi everyone, my name is Qi Liu. I’m a partner at Y Combinator. I’m also working on YC China. Today, I’m very, very pleased to have the opportunity to speak to Cindy, the founder and CEO of WebKit. As many of the YC community in the U.S. or China know, Web…
Don't Worry, Everything is Out of Control | Stoic Antidotes to Worry
Even though we can’t control the future, we’re worrying ourselves sick because of it. This could be because we don’t control the future. And this lack of control is the reason it frightens us. Or, we think we can control it by ‘thinking about it’ or perha…
The Paradox of an Infinite Universe
Is the universe infinite? Does it have an edge? And if so, what would you see if you went there? Today we know that the universe had a beginning 14 billion years ago and that it’s been expanding ever since. But something that’s expanding should also have…
Rainforests 101 | National Geographic
(Birds chirping) - [Narrator] Shrouded in a blanket of clouds, they awaken. Their canopies of green glitter in the sun. Their wildlife start to slither. (Snake hissing) - Chirp. (Birds chirping) - And growl. (Growling) - And one of the planet’s richest ec…