yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Upturning Tornadoes | Explorers in the Field


3m read
·Nov 11, 2024

Okay, 23:33, 21 coming straight for us. Oh my gosh! As a longtime storm researcher and storm chaser, I'm very interested in the dynamics of the formation of some of the strongest storms on earth.

[Music] [Music]

My name is Anton Simon. I'm an atmospheric and environmental scientist and National Geographic Explorer. Something about the age of eight, I’d go to the library by myself and take out all the books on things that fascinated me, reading everything I could.

What fascinated me back then? Things like mountaineering, great big storms, volcanoes. Guess what? All these years later, look at what I'm doing! It's not a surprise. I've had to confront things that used to be childhood fears. I've always been terrified of heights, even to the present day. But I can climb mountains because I've learned to deal with it.

Similarly, I used to be quite terrified of storms. Perhaps what that fear comes from is a fascination, and that fascination compels you to want to understand, you know, what it is and why they are so scary.

A tornado is a rapidly rotating column of air that is spawned by a much larger system: a very intense rotating thunderstorm we call a supercell. Thanks to great scientific advances, we have a very good understanding of how supercell thunderstorms form, but we don't yet have a good understanding of how tornadoes form from supercell storms. The better we can understand storm formation, the better we can predict tornadoes.

Now, we're trying to understand how a tornado forms. Number one: a layer of warm moist air near the Earth's surface flowing beneath a layer of much drier air further up. Number two: wind shear, which is the change of wind with increasing height. A buildup of heat creates atmospheric instability which drives the updraft. As the air rises rapidly, it also changes direction, introducing a twisting motion. Eventually, the rotation can later allow a tornado to form.

So, your typical tornado is not large; it's typically on the order of maybe 100 meters at the surface. However, on occasion, conditions will allow much, much larger circulations to form. The largest tornado on record, which we've studied, was the El Reno storm of 2013. El Reno, Oklahoma, the tornado grew to the largest I've mentioned ever seen anywhere in the world—more than four kilometers, just two and a half miles wide.

Working with tornadic storms took a very tragic turn in 2013 when the El Reno storm occurred, and I lost my former research teammates. Unfortunately, his car was overtaken by the tornado, and three people were killed. So, we went through a personal tragedy: the loss of great friends and colleagues.

But we've taken that very, very sad episode, recognizing an opportunity in that to actually advance tornado science by better understanding the storm that caused the disaster. So, we reached out on social media. We did what we call crowdsourcing, which is going on social media and requesting, "Hey, were you there? Did you see something interesting? Would you be willing to share it with us?"

Then from that, this huge discovery comes forth. We were able to answer this long-held question: Did tornadoes develop from the cloud downward or from the ground outward? The answer, at least in the case of the world's largest tornado, unquestionably, it formed from the ground and grew upward into the parent thundercloud.

That was a really big discovery that we never expected. Better understanding of storms ultimately benefits the public. If we can improve warnings and that type of thing, the other reason that I'm doing it is because I simply love it. There’s an enormous personal reward for doing it, and I'll never pretend that I need another reason other than that to do this.

Congratulations, team! Long time coming. I hope it didn't hurt anyone. That was so beautiful.

[Music]

More Articles

View All
Understanding SAFEs and Priced Equity Rounds by Kirsty Nathoo
I would like to introduce Kirsty, who is going to talk, uh, in much detail about SAFE’s notes, equity, and the like. “Kirsty.” “All right, good morning everybody. So, my name is Kirsty Nathu. I’m the CFO and one of the partners here at Y Combinator. I h…
Why Buying Coffee Makes You Poor
What’s up, you guys? It’s Graham here. So let’s dive into one of the most controversial and debated topics of financial advice in 2019, and that would be whether or not this cup of coffee is making you poor. That’s right! Today we’re gonna be talking abou…
How Lawn Mower Blades Cut Grass (at 50,000 FRAMES PER SECOND) - Smarter Every Day 196
Hey, it’s me Destin. Welcome back to Smarter Every Day. If you’re like me, you’ve spent a ton of your life on a lawn mower, and you’ve been thinking about how the blade interacts with the blades of grass. So today on Smarter Every Day, we’re going to look…
The Problem With Rich People
Pick up to the sound of the alarm on your iPhone, and annoyed that you couldn’t get more sleep, you grudgingly unlock your phone to see what’s going on in the world. There’s an email from Amazon telling you that your package has been delivered. So, you fo…
SCIENCE! What is the Rarest Precious Metal?
Hey, Vsauce. Michael here. And I’m in Anaheim at VidCon. I hope to see some of you here, because I like you guys. But I can’t marry all of you. But if I did put a ring on it, what is the most precious thing you could make that ring out of? Silver, gold, p…
How to Engage + Motivate Your Students Even When You're Remote!
Thanks everyone for getting started. Hold on one moment and we’ll begin in about 10 minutes. Okay everyone, this is Jeremy Schieffeling with Khan Academy. Thank you so much for your patience getting started this morning or this afternoon, depending on wh…