yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Examples of linear and exponential relationships


2m read
·Nov 11, 2024

So I have two different XY relationships being described here, and what I would like to do in this video is figure out whether each of these relationships, whether they are either linear relationships, exponential relationships, or neither. And like always, pause this video and see if you can figure it out yourself.

So let's look at this first relationship right over here. The key way to tell whether we're dealing with a linear, exponential, or neither relationship is to think about, okay, for a given change in x. And here, you see each time here we are increasing x by the same amount. So we're increasing x by three.

Given that we are increasing x by a constant amount, by three each time, does y increase by a constant amount? In which case, we would be dealing with a linear relationship. Or is there a constant ratio between successive terms when you increase x by a constant amount? In which case, we would be dealing with an exponential relationship.

So let's see here. We're going from negative two to five, so we are adding seven. When x increases by three, y increases by seven. When x is increasing by three, y increases by seven again. When x increases by three, y increases by seven again. So here, it is clearly a linear relationship.

In fact, you could even plot this on a line. If you assume that these are samples on a line, you could think even about the slope of that line. For a given change in x, the change in y is always constant. When our change in x is 3, our change in y is always 7. So this is clearly a linear relationship.

Now let's look at this one. Let's see, looks like our x's are changing by 1 each time, so plus 1. Now, what are y's changing by? Here, it changes by 2, then it changes by 6. All right, it's clearly not linear. Then it changes by 18. Clearly not a linear relationship.

If this was linear, this would be the same amount, same delta, same change in y for every time because we have the same change in x. So let's test to see if it's exponential. If it's exponential, for each of these constant changes in x, when we increase x by 1 every time, our ratio of successive y should be the same. Or another way to think about it is, what are we multiplying y by?

So to go from 1 to 3, you multiply by 3. To go from 3 to 9, you multiply by 3. To go from 9 to 27, you multiply by 3. So in a situation where every time you increase x by a fixed amount—in this case, 1—and the corresponding y's get multiplied by some fixed amount, then you are dealing with an exponential relationship. Exponential! Exponential relationship right over here.

More Articles

View All
This Widow’s Relatives Stole Everything. Now She’s Fighting Back. | National Geographic
For [Music] UGA [Music], for SE t b better story is not unique; it’s what we see every day in Uganda. The cultural tradition around property grabbing is the effect that when a man dies, the clan is automatically entitled to inherit his entire estate, incl…
Homeroom with Sal & Tom Inglesby, MD - Tuesday, September 8
Welcome to the Homeroom livestream. We have a very exciting conversation planned, but before we dive into that, I’ll give you my standard announcements. First of all, just a reminder that Khan Academy is a not-for-profit organization, and we wouldn’t exis…
Mr. Freeman, part 64
Ooops! Uh… Close the door! Get all of the young children out of here, and put your hands where I can see them! Do it! Today I’m going to tell you about a joyful and pleasant pastime, a piece of pocket-size happiness for anyone, a path to pure pleasure th…
Unexpected Dark Matter Discoveries From Super Distant Quasars
Hello INF person, this is Anton, and today I wanted to discuss one of the recent studies that was actually able to investigate some of the most distant quers, or these really massive black holes and galaxies around them, from some of the farthest regions …
Khanmigo has new features and is now FREE for teachers!
Hi, I’m Michelle, a professional learning specialist here at KH Academy and a former classroom teacher just like you. Meet Kigo, your AI-powered teaching ally who’s transforming education into an immersive journey. We’re excited to tell you that Kigo is …
Saving the Creepy Crawlies Release | Podcast | Overheard at National Geographic
Well, the first couple of months of the lockdown, I was just kind of bummed out. It was like March, April; I wasn’t sleeping that well. You know, there’s so many places I need to go and couldn’t go anywhere. This is National Geographic photographer Joel S…