yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Examples of linear and exponential relationships


2m read
·Nov 11, 2024

So I have two different XY relationships being described here, and what I would like to do in this video is figure out whether each of these relationships, whether they are either linear relationships, exponential relationships, or neither. And like always, pause this video and see if you can figure it out yourself.

So let's look at this first relationship right over here. The key way to tell whether we're dealing with a linear, exponential, or neither relationship is to think about, okay, for a given change in x. And here, you see each time here we are increasing x by the same amount. So we're increasing x by three.

Given that we are increasing x by a constant amount, by three each time, does y increase by a constant amount? In which case, we would be dealing with a linear relationship. Or is there a constant ratio between successive terms when you increase x by a constant amount? In which case, we would be dealing with an exponential relationship.

So let's see here. We're going from negative two to five, so we are adding seven. When x increases by three, y increases by seven. When x is increasing by three, y increases by seven again. When x increases by three, y increases by seven again. So here, it is clearly a linear relationship.

In fact, you could even plot this on a line. If you assume that these are samples on a line, you could think even about the slope of that line. For a given change in x, the change in y is always constant. When our change in x is 3, our change in y is always 7. So this is clearly a linear relationship.

Now let's look at this one. Let's see, looks like our x's are changing by 1 each time, so plus 1. Now, what are y's changing by? Here, it changes by 2, then it changes by 6. All right, it's clearly not linear. Then it changes by 18. Clearly not a linear relationship.

If this was linear, this would be the same amount, same delta, same change in y for every time because we have the same change in x. So let's test to see if it's exponential. If it's exponential, for each of these constant changes in x, when we increase x by 1 every time, our ratio of successive y should be the same. Or another way to think about it is, what are we multiplying y by?

So to go from 1 to 3, you multiply by 3. To go from 3 to 9, you multiply by 3. To go from 9 to 27, you multiply by 3. So in a situation where every time you increase x by a fixed amount—in this case, 1—and the corresponding y's get multiplied by some fixed amount, then you are dealing with an exponential relationship. Exponential! Exponential relationship right over here.

More Articles

View All
Warren Buffett Just Made a Huge $6.7B Investment.
Over the past few months, Warren Buffett has been hiding something: a secret stock, a secret position that was deliberately not disclosed to the public in his periodic 13F filings. And the SEC let him do it. They gave Buffett permission to buy up a stock …
SpaceX Makes History | MARS
T minus 20 seconds. Stage two tanks pressing for flight. Flight computer has control of the vehicle. Do we see anything on the sensors that’s a problem? Anything right now? Nothing. Well, I’ll say go for launch. T minus 10. 9. 8. 7. 6. 5. 4. 3. 2. 1…
Internet 101 | National Geographic
(light music) [Narrator] Today, about 4.2 billion people have access to a world of information never before seen. Such an extraordinary level of connectedness has revolutionized everything. From science and technology to commerce and romance, and virtual…
Perimeter word problem (tables) | Math | 3rd grade | Khan Academy
Leah and Pedro push two tables together. The figure below shows the new arrangement. So we have table number one and table number two that Leah and Pedro have pushed together. Maybe they’re having a bunch of people over for a fancy breakfast. They’ve push…
Transformations, part 3 | Multivariable calculus | Khan Academy
So I want to give you guys just one more example of a transformation before we move on to the actual calculus of multivariable calculus. In the video on parametric surfaces, I gave you guys this function here. It’s a very complicated looking function; it’…
How to get YOUR idea on SHARK TANK | Ask Mr. Wonderful #19 Kevin O'Leary and Mindy Casting
[Music] The traffic was okay. All right, we’re rolling there. Okay, I’m gonna get my merch going here. You know, slow is the commercial horse, everything. Exactly. All right, what is your real second name? I call you Mindy caste. It’s just Minnie. My las…