yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Examples of linear and exponential relationships


2m read
·Nov 11, 2024

So I have two different XY relationships being described here, and what I would like to do in this video is figure out whether each of these relationships, whether they are either linear relationships, exponential relationships, or neither. And like always, pause this video and see if you can figure it out yourself.

So let's look at this first relationship right over here. The key way to tell whether we're dealing with a linear, exponential, or neither relationship is to think about, okay, for a given change in x. And here, you see each time here we are increasing x by the same amount. So we're increasing x by three.

Given that we are increasing x by a constant amount, by three each time, does y increase by a constant amount? In which case, we would be dealing with a linear relationship. Or is there a constant ratio between successive terms when you increase x by a constant amount? In which case, we would be dealing with an exponential relationship.

So let's see here. We're going from negative two to five, so we are adding seven. When x increases by three, y increases by seven. When x is increasing by three, y increases by seven again. When x increases by three, y increases by seven again. So here, it is clearly a linear relationship.

In fact, you could even plot this on a line. If you assume that these are samples on a line, you could think even about the slope of that line. For a given change in x, the change in y is always constant. When our change in x is 3, our change in y is always 7. So this is clearly a linear relationship.

Now let's look at this one. Let's see, looks like our x's are changing by 1 each time, so plus 1. Now, what are y's changing by? Here, it changes by 2, then it changes by 6. All right, it's clearly not linear. Then it changes by 18. Clearly not a linear relationship.

If this was linear, this would be the same amount, same delta, same change in y for every time because we have the same change in x. So let's test to see if it's exponential. If it's exponential, for each of these constant changes in x, when we increase x by 1 every time, our ratio of successive y should be the same. Or another way to think about it is, what are we multiplying y by?

So to go from 1 to 3, you multiply by 3. To go from 3 to 9, you multiply by 3. To go from 9 to 27, you multiply by 3. So in a situation where every time you increase x by a fixed amount—in this case, 1—and the corresponding y's get multiplied by some fixed amount, then you are dealing with an exponential relationship. Exponential! Exponential relationship right over here.

More Articles

View All
Warren Buffett Explains the 7 Rules Investors Must Follow in 2023
Warren Buffett, the king of value investing, has definitely built a cult-like following over the years, and well, he’s undoubtedly my investing idol too. What I find so interesting about his investment strategy, the one that’s made him 20% returns per yea…
Khan Academy Ed Talk with Bob Hughes - Tuesday, March 23
Hi everyone, Sal Khan here from Khan Academy. Welcome to our Ed Talks live stream, which you could view as a flavor of our Homeroom live stream. Uh, and before we jump into a very exciting conversation with Bob Hughes, who’s the Director of K-12 U.S. Educ…
WATER BALLOONS in SLOW MOTION - Smarter Every Day 24
Hey, it’s me, Destin. So, um… We got a hairbrained idea and we came to an art festival… It’s not really an art festival, it’s a festival, here in Alabama. We’ve made art with bullets and tried to sell it. So this is what we’ve got. We’ve got a bunch of a…
Carrot Sharpener. LÜT #27
Why would anybody peel a carrot when they could use an oversized pencil sharpener built just for them? And the same goes for cigarette…pencils. It’s episode 27 of LÜT. For pencils that are more musical, grab yourself a pair of drumstick pencils. And Davi…
Warren Buffett on How to Calculate Intrinsic Value of a Stock
I mean, if somebody shows us a business, you know, the first thing that goes through our head is: would we rather own this business than more Coca-Cola? Would we rather own it than more Gillette? Now, it’s crazy not to compare it to things that you’re ver…
Society Needs THESE Two Things in Order to be Successful
History has shown that there are only two things a society needs in order to be successful. The first is the ability to provide a good education to most people that teaches them skills and civility so they can be productive. In other words, the developmen…