yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Examples of linear and exponential relationships


2m read
·Nov 11, 2024

So I have two different XY relationships being described here, and what I would like to do in this video is figure out whether each of these relationships, whether they are either linear relationships, exponential relationships, or neither. And like always, pause this video and see if you can figure it out yourself.

So let's look at this first relationship right over here. The key way to tell whether we're dealing with a linear, exponential, or neither relationship is to think about, okay, for a given change in x. And here, you see each time here we are increasing x by the same amount. So we're increasing x by three.

Given that we are increasing x by a constant amount, by three each time, does y increase by a constant amount? In which case, we would be dealing with a linear relationship. Or is there a constant ratio between successive terms when you increase x by a constant amount? In which case, we would be dealing with an exponential relationship.

So let's see here. We're going from negative two to five, so we are adding seven. When x increases by three, y increases by seven. When x is increasing by three, y increases by seven again. When x increases by three, y increases by seven again. So here, it is clearly a linear relationship.

In fact, you could even plot this on a line. If you assume that these are samples on a line, you could think even about the slope of that line. For a given change in x, the change in y is always constant. When our change in x is 3, our change in y is always 7. So this is clearly a linear relationship.

Now let's look at this one. Let's see, looks like our x's are changing by 1 each time, so plus 1. Now, what are y's changing by? Here, it changes by 2, then it changes by 6. All right, it's clearly not linear. Then it changes by 18. Clearly not a linear relationship.

If this was linear, this would be the same amount, same delta, same change in y for every time because we have the same change in x. So let's test to see if it's exponential. If it's exponential, for each of these constant changes in x, when we increase x by 1 every time, our ratio of successive y should be the same. Or another way to think about it is, what are we multiplying y by?

So to go from 1 to 3, you multiply by 3. To go from 3 to 9, you multiply by 3. To go from 9 to 27, you multiply by 3. So in a situation where every time you increase x by a fixed amount—in this case, 1—and the corresponding y's get multiplied by some fixed amount, then you are dealing with an exponential relationship. Exponential! Exponential relationship right over here.

More Articles

View All
Subtracting mixed numbers with regrouping
So let’s see how we could approach 4 and 1⁄4 minus 2 and 2⁄4. Pause this video and have a go at that before we work on this together. All right, so the first thing that you might try to do is rewrite this as 4 and 1⁄4 minus 2 and 2⁄4. The reason why it’s…
Why It Actually Might Be 'Survival of the Friendliest' | Nat Geo Explores
[Music] It’s a dog-eat-dog world: winner takes all, survival of the fittest. But is it really? If the biggest and baddest always win, how come there are so many more of them than them? Strength is helpful, but friendliness might actually be the key to evo…
The Universe's Biggest Paradoxes
acting a little self-obsessed is different from feeling like we are truly the only person who exists. What would that be like? Everyone and everything else being a figment of our imagination; actually being the center of the universe. It seems like a fun …
15 Dumb Ways to Spend Your Money
Alex, do you ever find yourself, like halfway through the month, and wonder where your paycheck went? Well, you’re not alone. Okay, we all have those moments where we splurge a little bit too freely, sometimes in ways that might make us cringe later on. L…
Can Ugly People Get Rich Too? | Ask. Mr. Wonderful #12 Kevin O'Leary
Oh that, that’s gonna require a sip of wine. Leah, that’s a really tough question. [Music] Okay, so we’re gonna have a really interesting session of Ask Mr. Wonderful today because of one of my most, I guess, favorite places. I’m in an FP Joran watch bout…
My Coffee Company Is Going Broke
What’s up guys, it’s Graham here. So this is a video I’m certainly not happy about making, but since I started this channel with the sole purpose of being as open and transparent as possible, I think I owe it to you to explain what’s going on and bring yo…