yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Examples of linear and exponential relationships


2m read
·Nov 11, 2024

So I have two different XY relationships being described here, and what I would like to do in this video is figure out whether each of these relationships, whether they are either linear relationships, exponential relationships, or neither. And like always, pause this video and see if you can figure it out yourself.

So let's look at this first relationship right over here. The key way to tell whether we're dealing with a linear, exponential, or neither relationship is to think about, okay, for a given change in x. And here, you see each time here we are increasing x by the same amount. So we're increasing x by three.

Given that we are increasing x by a constant amount, by three each time, does y increase by a constant amount? In which case, we would be dealing with a linear relationship. Or is there a constant ratio between successive terms when you increase x by a constant amount? In which case, we would be dealing with an exponential relationship.

So let's see here. We're going from negative two to five, so we are adding seven. When x increases by three, y increases by seven. When x is increasing by three, y increases by seven again. When x increases by three, y increases by seven again. So here, it is clearly a linear relationship.

In fact, you could even plot this on a line. If you assume that these are samples on a line, you could think even about the slope of that line. For a given change in x, the change in y is always constant. When our change in x is 3, our change in y is always 7. So this is clearly a linear relationship.

Now let's look at this one. Let's see, looks like our x's are changing by 1 each time, so plus 1. Now, what are y's changing by? Here, it changes by 2, then it changes by 6. All right, it's clearly not linear. Then it changes by 18. Clearly not a linear relationship.

If this was linear, this would be the same amount, same delta, same change in y for every time because we have the same change in x. So let's test to see if it's exponential. If it's exponential, for each of these constant changes in x, when we increase x by 1 every time, our ratio of successive y should be the same. Or another way to think about it is, what are we multiplying y by?

So to go from 1 to 3, you multiply by 3. To go from 3 to 9, you multiply by 3. To go from 9 to 27, you multiply by 3. So in a situation where every time you increase x by a fixed amount—in this case, 1—and the corresponding y's get multiplied by some fixed amount, then you are dealing with an exponential relationship. Exponential! Exponential relationship right over here.

More Articles

View All
Selling corporate jets isn't easy!
How long can that process take? Days, weeks; sometimes you’re working on a transaction for a year or two. Sometimes it’s a month, still right up to the line. I’ve had a transaction where we’ve signed the contract, they put up a deposit, and we’re going t…
15 Habits That Help You Balance Life Better
Alexer, have you ever in your life, in this year or even in this week, felt truly balanced? Have you ever felt like you did everything you wanted to do, hit your goals, were present with people in your life, and nailed your work? It’s a great feeling, but…
Acacia Ants Vs. Elephant | A Real Bug's Life | National Geographic
Up against the largest land animal, no bug is safe. The elephant is headed straight for our old-timer’s tree. She’s so shortsighted, she can’t see more than a few inches ahead. But she can feel through her feet, and she’s picking up bad vibes. Mammoth mon…
Le Châtelier's principle | Reaction rates and equilibrium | High school chemistry | Khan Academy
Let’s imagine a reaction that is in equilibrium: A plus B can react to form C plus D, or you could go the other way around. C plus D could react to form A plus B. We assume that they’ve all been hanging around long enough for this to be in equilibrium, so…
THE FED JUST FLIPPED THE MARKET | Urgent Changes Explained
What’s up, Graham? It’s guys here! So, you know the saying that riches are made in recessions? Well, even though housing data fell to its lowest level ever, tech layoffs are getting more and more common, and the price for oil keeps going higher. Brand ne…
5 Tricks That Save A LOT of Money FAST
What’s up, guys? It’s Graham here, so let’s get right into it because we’ve got an issue here. According to research, nearly 60% of adults do not have enough money saved to cover a $1,000 emergency, and nearly a third of those people would have to resort …