yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing geometric sequences | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told a sequence is defined by F of n is equal to 1/5 * F of n-1. So each term, whatever the value of the function is there, where the sequence is for that term, it's 1 times the previous term for each whole number n, where n is greater than one.

Then they also tell us which we need: what the first term is; F of one is equal to 50. Now, the reason I have this graph here is what I want you to do is pause this video and figure out what the value of this function is for n = 1, 2, 3, and 4. Then we're going to be able to graph this together and think about what that graph looks like and why.

All right, now let's do this together. What I like to do is set up a table here, where on this left column I have n, and then over here I have F of n on the right column.

Let's first start with n equals 1. Well, they already tell us that F of one is equal to 50. If we want, we can plot that when n is equal to one. I should say this is the n axis instead of the x axis. When n is equal to 1, F of one is 50 right over here. So let's call this the Y is equal to F of n axis.

All right, let's do the next one. I'll do that in red. When n is equal to 2, well, F of two is going to be equal to it says it right over here: 1/5 times F of (2 - 1) or 1 * F of 1. So I could just write that as 1 * F of 1, which is equal to 1/5 * 50, which is equal to 10.

So when n is equal to two, this is equal to 10 right over here; F of two is 10. Now let's go to when n is equal to 3. F of three, I think you see the pattern here, is equal to 1/5 times F of 2. We know what F of two is; it's 10, so it's equal to 1/5 * 10, which is equal to 2.

So when n is equal to 3, Y is equal to F of n is equal to 2, which is right about there. And then, last but not least, in orange, when n is equal to 4, F of 4 is equal to 1/5 times F of three, the previous term, which is equal to 1/5 * 2, which is equal to two-fifths.

So that's less than one, so it's going to be real just right above zero like that. We have graphed those four points, and you might see an interesting pattern here. You might say, "Hey, you know what? This looks a lot like exponential decay."

That's not a coincidence because remember, every term here it's 1/5 times the previous term. So we're decaying; we're multiplying each successive term by 1/5; it's getting smaller and smaller and smaller. But that's what we're seeing here when we're dealing with a geometric sequence.

Now, in this particular scenario, we defined this geometric sequence recursively. Each successive term we've defined in terms of the previous term, and then we got a starting condition. There's other ways to define a geometric series so that it is not recursive, but it's good to get exposure to this.

Generally speaking, if you have each successive term, it's going to be some multiple of the previous term. Here, it's a multiple less than one; it could be a multiple greater than one. You're going to have points that look like they're on some type of exponential curve.

If, on the other hand, you had an arithmetic sequence, where each successive term is plus or minus some fixed amount of the previous term, then it will look more linear.

More Articles

View All
Sine and cosine from rotating vector
Now I’d like to demonstrate one way to construct a sine wave. What we’re going to do is we’re going to construct something that looks like ( S(\Omega t) ). So, we have our function of time here and we have our frequency. Now this little animation is goin…
Momentum collision graphs
A cart of mass m moving rightward at speed 2v hits a slower moving cart of mass m moving rightward at speed v. When the carts collide, they hook together. There’s friction between the track and carts and between the moving parts of the carts. Which of the…
Why Do We Kiss?
Hey, Vsauce, Michael here. Attachment of two people’s lips kissing. The average person will spend about 20,160 minutes of his or her life kissing. And the world record for the longest, continuous kiss is 58 hours, 35 minutes, and 58 seconds. But why do we…
Kat Manalac's Whale AMA
We usually let the startups in each batch decide when they want to launch. Um, so most of the startups in the winter ‘17 batch haven’t announced yet. But, um, there is one female founder who has announced her company. Um, it’s called Simple Habit. It is a…
Patterns in hundreds chart
So what we have in this chart is all the numbers from 1 to 100 organized in a fairly neat way. It’s a somewhat intuitive way to organize it where each row you have 10. So you go from 1 to 10, then 11 to 20, then 21 to 30, all the way to 100. And what we’…
Hyena Skulls and Suspicious Batteries | To Catch a Smuggler: South Pacific | National Geographic
At Oakland’s International Mail Center, Customs officers routinely scrutinize mail from many countries. Today, Customs Officer Naomi is taking a closer look at a package sent from Kenya. It’s declared as head lamps; this is the x-ray image of the package,…