yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Volume with cross sections perpendicular to y-axis | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let R be the region enclosed by y is equal to four times the square root of nine minus x and the axes in the first quadrant. We can see that region R, and gray right over here, region R is the base of a solid. For each y value, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose base lies in R and whose height is y. Express the volume of the solid with a definite integral.

So pause this video and see if you can do that. All right, now let's do this together. First, let's just try to visualize the solid, and I'll try to do it by drawing this with a little bit of perspective. If that's our y-axis and then this is our x-axis right over here, I can redraw region R. It looks something like this.

Now, let's just imagine a cross section of our solid. It says the cross section of the solid taken perpendicular to the y-axis. So let's pick a y value right over here. We're going to go perpendicular to the y-axis. It says whose base lies in R, so the base would look like that. It would actually be the x value that corresponds to that particular y value, so I'll just write x right over here.

Then the height is y, so the height is going to be whatever our y value is. If we wanted to calculate the volume of just a little slice that has an infinitesimal depth, we could think about that infinitesimal depth in terms of y. We could say its depth right over here is dy.

We could draw other cross sections. For example, right over here, our y is much lower. It might look some. So our height will be like that, but then our base is the corresponding x value that sits on the curve right over that xy pair that would sit on that curve. This cross section would look like this.

Once again, if we wanted to calculate its volume, we could say there's an infinitesimal volume, and it would have depth dy. As we've learned many times in integration, what we want to do is think about the volume of one of these, I guess you could say slices, and then integrate across all of them.

Now, there are a couple of ways to approach it. You could try to integrate with respect to x, or you could integrate with respect to y. I'm going to argue it's much easier to integrate with respect to y here because we already have things in terms of dy.

The volume of this little slice is going to be y times x times dy. Now if we want to integrate with respect to y, we want everything in terms of y, so what we need to do is express x in terms of y. Here, we just have to solve for x. One way to do this is to divide both sides by 4. So you get y over 4 is equal to the square root of 9 minus x.

Now we can square both sides. y squared over 16 is equal to 9 minus x. Then let's see, we could multiply both sides by negative 1. So negative y squared over 16 is equal to x minus 9. Now we could add 9 to both sides, and we get 9 minus y squared over 16 is equal to x.

So we could substitute that right over there. Another way to express the volume of this little slice right over here of infinitesimal depth dy is going to be y times (9 minus y squared over 16) dy.

If we want to find the volume of the whole figure, that's going to look something like that. We're just going to integrate from y equals 0 to y is equal to 12. So integrate from y is equal to 0 to y is equal to 12.

And that's all they asked us to do, to express the volume as a definite integral. But this is actually a definite integral that you could solve without a calculator. If you multiply both of these terms by y, well then you're just going to have a polynomial in terms of y, and we know how to take the antiderivative of that and then evaluate a definite integral.

More Articles

View All
unedited super honest Q&A
Hi guys, it’s me Ruri. I’m back with another video! Today, we’re doing a very interesting type of video, which is an unedited Q&A video. So why am I doing this? This is actually a homework of part-time YouTuber Academy to answer questions unedited, et…
Dividing whole numbers by decimals examples
Let’s say we want to figure out what eight divided by four tenths is. Pause this video and try to figure it out on your own before we do it together. All right, now one way to approach this is to think about everything in terms of tenths. And why tenths,…
Mastering Self Control | Stoic Exercises For Inner Peace
The Stoics bring forth the theme of self-control on a regular basis. Epictetus, for example, spoke about abstaining from talking about vulgar things, and Marcus Aurelius points out that we should set limits to comfort and consumption. In this video, I’ll …
Solar eclipses | The Earth-sun-moon system | Middle school Earth and space science | Khan Academy
Have you ever been minding your own business, enjoying the sun, when someone steps in front of you and blocks your sunlight? This is pretty much what happens during a solar eclipse, except on a planetary scale. As Earth revolves around the sun, the moon r…
Snorkeling With President Obama: How Our Photographer Got the Shot (Exclusive) | National Geographic
I’ve never photographed a president before. This was my first experience, you know, being sort of in the presence of Air Force One and all the security and Secret Service. The day that the president arrived was a perfect day—sunny, clear. I didn’t expect …
Meet the $250,000,000 man
As many of you know, I’m an avid YouTube connoisseur. Now, even though I’ve only been making videos here on YouTube for about 24 months, I have been on here as a loyal viewer since about 2010. Every now and then, someone comes across your screen that gets…