yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals: reverse power rule | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's evaluate the definite integral from negative 3 to 5 of 4 dx. What is this going to be equal to? I encourage you to pause the video and try to figure it out on your own.

All right, so in order to evaluate this, we need to remember the fundamental theorem of calculus, which connects the notion of a definite integral and an antiderivative.

The fundamental theorem of calculus tells us that our definite integral from a to b of f of x dx is going to be equal to the antiderivative of our function f, which we denote with the capital F evaluated at the upper bound, minus our antiderivative evaluated at the lower bound.

So, we just have to do that right over here. This is going to be equal to... well, what is our antiderivative of 4? You might immediately say, well that's just going to be 4x. You could even think of it in terms of reverse power rule: 4 is the same thing as 4x to the 0. So, you increase 0 by 1, so it's going to be 4x to the first, and then you divide by that new exponent. 4x to the first divided by 1, well that's just going to be 4x.

So, the antiderivative is 4x. This is, you could say, our capital F of x. We're going to evaluate that at 5 and at negative three, and we're going to find the difference between these two.

What we have right over here, evaluating the antiderivative at our upper bound, that is going to be four times five. Then, from that, we're going to subtract evaluating our antiderivative at the lower bound, so that's four times negative three.

What is that going to be equal to? This is 20 and then minus negative 12. So, this is going to be plus 12, which is going to be equal to 32.

Let's do another example where we're going to do the reverse power rule. So, let's say that we want to find the definite integral going from negative 1 to 3 of 7x squared dx. What is this going to be equal to?

Well, what we want to do is evaluate what is the antiderivative of this, or you could say, if this is lowercase f of x, what is capital F of x? Well, the reverse power rule: we increase this exponent by 1. So, we're going to have 7 times x to the third, and then we divide by that increased exponent.

So, 7x to the third divided by 3, and we want to evaluate that at our upper bound and then subtract from that it evaluated at our lower bound. So, this is going to be equal to, evaluating it at our upper bound, it's going to be 7 times 3 to the third, I'll just write that 3 to the third over 3.

From that, we are going to subtract this capital F of x, the antiderivative evaluated at the lower bound, so that is going to be 7 times negative 1 to the third, all of that over 3.

So, this first expression, let's see, this is going to be 7 times 3 to the third over 3. This is 27 over 3, this is going to be the same thing as 7 times 9. So, this is going to be 63.

And this over here, negative 1 to the third power is negative 1, but then we're subtracting a negative, so this is just going to be adding. So this is just going to be plus 7 over 3. Plus 7 over 3, if we wanted to express this as a mixed number, seven over three is the same thing as two and one-third.

So when we add everything together, we are going to get 65 and one-third, and we are done.

More Articles

View All
WHAT ARE INVESTING MISTAKES YOU NEED TO AVOID? | Meet Kevin PT III
When you buy an asset that’s illiquid, like real estate, sometimes that is its diverse in the sense it’s a different asset class. But it does not provide for liquidity in times of stress. You need to understand where there’s risk. You can’t value every as…
Taken Hostage While Rock Climbing | Nat Geo Live
( Intro music ) About a week into our expedition, a rebel group from the Islamic Movement of Uzbekistan moved through the valley, and they saw us 1,000 feet up on this big wall. They saw this as this opportunity. And so, we awoke one morning to bullets fl…
Character change | Reading | Khan Academy
Hello readers! One of the wonderful things about stories when they’re given the room to grow and expand is the idea of character change or growth over time. Characters in stories are just like real people; they have the capacity to change, to make mistake…
Meet Jeff, a creator of AP Statistics on Khan Academy | AP Statistics | Khan Academy
I was a teacher for 10 years in Kazu Public Schools. They’re a midsize urban district in Southwest Michigan. In my first three years, I taught Algebra 1, Geometry, Algebra 2—the core math classes. But I also taught an introductory statistics course. Then,…
Why You Will Marry the Wrong Person
I’ve been asked to talk to you today about an essay that I wrote, uh, for the New York Times, um, last year, which went under a rather dramatic, uh, heading. Uh, it was called “Why You Will Marry the Wrong Person.” And perhaps we can just begin, um, we’re…
Seth MacFarlane’s Scientific Influences | StarTalk
Seth, I called you into my office. Yes, I gotta talk to you because you want me to help you clean up. I clean up the office. Uh, I got at some point I had to find you and talk to you about the science and Family Guy. Yeah, yeah, you just have to watch a …