yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals: reverse power rule | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's evaluate the definite integral from negative 3 to 5 of 4 dx. What is this going to be equal to? I encourage you to pause the video and try to figure it out on your own.

All right, so in order to evaluate this, we need to remember the fundamental theorem of calculus, which connects the notion of a definite integral and an antiderivative.

The fundamental theorem of calculus tells us that our definite integral from a to b of f of x dx is going to be equal to the antiderivative of our function f, which we denote with the capital F evaluated at the upper bound, minus our antiderivative evaluated at the lower bound.

So, we just have to do that right over here. This is going to be equal to... well, what is our antiderivative of 4? You might immediately say, well that's just going to be 4x. You could even think of it in terms of reverse power rule: 4 is the same thing as 4x to the 0. So, you increase 0 by 1, so it's going to be 4x to the first, and then you divide by that new exponent. 4x to the first divided by 1, well that's just going to be 4x.

So, the antiderivative is 4x. This is, you could say, our capital F of x. We're going to evaluate that at 5 and at negative three, and we're going to find the difference between these two.

What we have right over here, evaluating the antiderivative at our upper bound, that is going to be four times five. Then, from that, we're going to subtract evaluating our antiderivative at the lower bound, so that's four times negative three.

What is that going to be equal to? This is 20 and then minus negative 12. So, this is going to be plus 12, which is going to be equal to 32.

Let's do another example where we're going to do the reverse power rule. So, let's say that we want to find the definite integral going from negative 1 to 3 of 7x squared dx. What is this going to be equal to?

Well, what we want to do is evaluate what is the antiderivative of this, or you could say, if this is lowercase f of x, what is capital F of x? Well, the reverse power rule: we increase this exponent by 1. So, we're going to have 7 times x to the third, and then we divide by that increased exponent.

So, 7x to the third divided by 3, and we want to evaluate that at our upper bound and then subtract from that it evaluated at our lower bound. So, this is going to be equal to, evaluating it at our upper bound, it's going to be 7 times 3 to the third, I'll just write that 3 to the third over 3.

From that, we are going to subtract this capital F of x, the antiderivative evaluated at the lower bound, so that is going to be 7 times negative 1 to the third, all of that over 3.

So, this first expression, let's see, this is going to be 7 times 3 to the third over 3. This is 27 over 3, this is going to be the same thing as 7 times 9. So, this is going to be 63.

And this over here, negative 1 to the third power is negative 1, but then we're subtracting a negative, so this is just going to be adding. So this is just going to be plus 7 over 3. Plus 7 over 3, if we wanted to express this as a mixed number, seven over three is the same thing as two and one-third.

So when we add everything together, we are going to get 65 and one-third, and we are done.

More Articles

View All
Peter Lynch's Tips to Prepare for a Stock Market Crash
What you learn from history is the market goes down. It goes down a lot. The math is simple. There’s been 93 years, a century. This is easy to do. The market’s had 50 declines of 10% or more. So, 50 declines in 93 years, about once every two years. The m…
15 Cryptocurrencies We Invested In (Alux.com Portfolio Reveal)
Hello Elixers! This video was a long time in the making. We began our crypto journey in 2016, before the first bull run, so we’ve been around long enough to see the markets change and slowly mature to the point we see them at today. We believe crypto is a…
Personalized Stories Starring Your Kids: Khanmigo's Craft a Story! | Bedtime stories for kids
Hi parents! Are you looking to put a fresh spin on story time, or maybe you want to make bedtime more fun, engaging, and personalized? I’ve got something you’re going to love! Meet K Migo’s “Craft a Story” feature. Let me show you how it works. First, we…
Moderating content with logical operators | Intro to CS - Python | Khan Academy
Let’s design a program with compound Boolean expressions. We’re working on an automated content moderation system for our site. We want our system to automatically flag posts that seem questionable so our team can investigate further and decide which one…
Exploring the Bay of Plenty | National Geographic
Incredible geological features, beautiful coastline; New Zealand’s Māori culture on full display. And friendly faces everywhere. Welcome to the Bay of Plenty. National Geographic sent my colleagues and me to Rotorua and Whakatāne to discover what makes th…
More formal treatment of multivariable chain rule
Hello everyone. So this is what I might call a more optional video. In the last couple of videos, I talked about this multivariable chain rule, and I gave some justification. It might have been considered a little bit handwavy by some. I was doing a lot o…