yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integrals: reverse power rule | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's evaluate the definite integral from negative 3 to 5 of 4 dx. What is this going to be equal to? I encourage you to pause the video and try to figure it out on your own.

All right, so in order to evaluate this, we need to remember the fundamental theorem of calculus, which connects the notion of a definite integral and an antiderivative.

The fundamental theorem of calculus tells us that our definite integral from a to b of f of x dx is going to be equal to the antiderivative of our function f, which we denote with the capital F evaluated at the upper bound, minus our antiderivative evaluated at the lower bound.

So, we just have to do that right over here. This is going to be equal to... well, what is our antiderivative of 4? You might immediately say, well that's just going to be 4x. You could even think of it in terms of reverse power rule: 4 is the same thing as 4x to the 0. So, you increase 0 by 1, so it's going to be 4x to the first, and then you divide by that new exponent. 4x to the first divided by 1, well that's just going to be 4x.

So, the antiderivative is 4x. This is, you could say, our capital F of x. We're going to evaluate that at 5 and at negative three, and we're going to find the difference between these two.

What we have right over here, evaluating the antiderivative at our upper bound, that is going to be four times five. Then, from that, we're going to subtract evaluating our antiderivative at the lower bound, so that's four times negative three.

What is that going to be equal to? This is 20 and then minus negative 12. So, this is going to be plus 12, which is going to be equal to 32.

Let's do another example where we're going to do the reverse power rule. So, let's say that we want to find the definite integral going from negative 1 to 3 of 7x squared dx. What is this going to be equal to?

Well, what we want to do is evaluate what is the antiderivative of this, or you could say, if this is lowercase f of x, what is capital F of x? Well, the reverse power rule: we increase this exponent by 1. So, we're going to have 7 times x to the third, and then we divide by that increased exponent.

So, 7x to the third divided by 3, and we want to evaluate that at our upper bound and then subtract from that it evaluated at our lower bound. So, this is going to be equal to, evaluating it at our upper bound, it's going to be 7 times 3 to the third, I'll just write that 3 to the third over 3.

From that, we are going to subtract this capital F of x, the antiderivative evaluated at the lower bound, so that is going to be 7 times negative 1 to the third, all of that over 3.

So, this first expression, let's see, this is going to be 7 times 3 to the third over 3. This is 27 over 3, this is going to be the same thing as 7 times 9. So, this is going to be 63.

And this over here, negative 1 to the third power is negative 1, but then we're subtracting a negative, so this is just going to be adding. So this is just going to be plus 7 over 3. Plus 7 over 3, if we wanted to express this as a mixed number, seven over three is the same thing as two and one-third.

So when we add everything together, we are going to get 65 and one-third, and we are done.

More Articles

View All
David Friedman. Private Rights Enforcement.
I imagine a society where there is no government. Where each individual is the customer of a firm that sells him the service of protecting his rights and settling his disputes. And this raises an obvious problem, which is if I have a dispute with you and …
See Why This Roller Skating Girl Squad Is the First of Its Kind | Short Film Showcase
The thing that I love about Derby is I forget everything around me when I’m playing. Every one of us kind of have nicknames, so my nickname around there be as shiny tiny, because I’m tiny, I’m short, and I had this like bling. Users like shiny tiny, and m…
Applying Einstein velocity addition | Special relativity | Physics | Khan Academy
Now let’s apply the formula we came up in the last video, sometimes known as the Einstein velocity addition formula, and we’ll see that it’s a pretty neat thing. So let’s say, this is once again me floating in space. My frame of reference is just the S f…
Impact of mass on orbital speed | AP Physics 1 | Khan Academy
A satellite of mass lowercase m orbits Earth at a radius capital R and speed v naught, as shown below. So, this has mass lowercase m. An aerospace engineer decides to launch a second satellite that is double the mass into the same orbit. So, the same orbi…
Homeroom with Sal, Carol Dweck, PhD, & Vicky Colbert - Tuesday, May 25
Hi everyone, Sal Khan here from Khan Academy. Welcome to the Homeroom with Sal live stream. We have a very exciting show today. We have, I would say, two mega figures in the world of education. We have Carol Dweck, a professor at Stanford. You all might …
watch this if you always procrastinate
If this sounds like you, please watch this video. You are a highly intellectual individual who wants to improve their life in any sort of area. You started to look for options and ways to improve your life and deepen your knowledge about self-improvement,…