yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding specific antiderivatives: rational function | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

So we're told that ( F(2) ) is equal to 12. ( F' ) prime of ( x ) is equal to ( \frac{24}{x^3} ), and what we want to figure out is what ( F(-1) ) is.

Alright, so they give us the derivative in terms of ( x ), so maybe we can take the antiderivative of the derivative to find our original function. So let's do that. We could say that ( F(x) ) is going to be equal to the antiderivative, or we could say the indefinite integral of ( F' ) prime of ( x ), which is equal to ( \frac{24}{x^3} ).

I could write it over like this ( \frac{24}{x^3} ), but to help me process it a little bit more, I'm going to write this as ( 24x^{-3} ) because then it'll become a little clearer how to take that antiderivative ( \frac{d}{dx} ).

So what is the antiderivative of ( 24x^{-3} )? Well, we're just going to do the power rule in reverse. So what we're going to do is we're going to increase the exponent. Let me just rewrite it: it's going to be ( 24x^{-\frac{3}{1}} ), we're going to increase the exponent by 1, so it's going to be ( x^{-3 + 1} ) and then we're going to divide by that increased exponent, which is ( -3 + 1 ).

So that is going to be ( -3 + 1 = -2 ), and then we divide by ( -2 ). And if you're in doubt about what we just did, we're kind of doing the power rule in reverse now. Take the power rule, take the derivative of this using the power rule: ( -2 \times 24 = -48 \div -2 ) is just going to be 24, and then you decrement that exponent going to ( -3 ).

So are we done here? Is this ( F(x) )? Well, ( F(x) ) might involve a constant, so let's put a constant out here because notice if you were to take the derivative of this thing here, the derivative of ( \frac{24x^{-2}}{-2} ) we already established is ( 24x^{-3} ), but then if you take the derivative of a constant, well that just disappears, so you don't see it when you look at the derivative.

So we have to make sure that there might be a constant. And I have a feeling, based on the information that they've given us, that we're going to make use of that constant. So let me rewrite ( F(x) ). So we know that ( F(x) ) can be expressed as ( -12x^{-2} + C ).

So how do we figure out that constant? Well, they have told us what ( F(2) ) is. ( F(2) ) is equal to 12, so let's write this down. So when ( F(2) = 12 ), which is equal to ( -12(2^{-2}) + C ).

So ( 12 = -12(2^{-2}) + C ). Now, what is this ( 2^{-2} )? ( 2^{-2} = \frac{1}{2^2} = \frac{1}{4} ). So this is ( -12 \times \frac{1}{4} = -3 ).

So it's ( -3 + C ). Now we can add 3 to both sides to solve for ( C ). We get ( 15 = C ), so ( C = 15 ).

That is equal to 15. And so now we can write our ( F(x) ) as ( F(x) = -12x^{-2} + 15 ). And now using that, we can evaluate ( F(-1) ).

( F(-1) ): wherever we see an ( x ), we put in ( -1 ). So this is going to be ( -12(-1)^{-2} + 15 ).

So ( F(-1) = -12 \div (-1)^{-2} + 15 ). Well, ( (-1)^{-2} ) is just 1, so it's going to be ( -12 + 15 ), which is equal to 3. And we're done! This thing is equal to 3.

More Articles

View All
Mad Brad | Wicked Tuna
All right, we’re going to haul up now and come in. Weird fishing, there’s fish around. There’s a couple bites; you don’t mark that many. It’s just very strange. There’s a ton of boats out here; everybody’s trying to get their last licks in before the end …
Words Are the Most Powerful Drug | Origins: The Journey of Humankind
Humans stand alone in the animal kingdom. Our power over nature is unparalleled. What separates us? What is it that makes us human? The answer lies in our mastery of communication: the power to express complex thoughts and ideas; to organize and think col…
Strong acid–strong base titrations | Acids and bases | AP Chemistry | Khan Academy
Hydrochloric acid is an example of a strong acid, and sodium hydroxide is an example of a strong base. Let’s say we are titrating an unknown concentration of hydrochloric acid with a known concentration of sodium hydroxide. Let’s say it’s 0.20 molar. Beca…
The Most Iconic TAG Heuer Watch of All Time | Monaco Split-Seconds Chronograph
Hey, Mr. Wonderful here, and I am in a magic zone! This is TAG. Now, this brand is legendary as a sports brand, obviously through racing, the association with racing, but it’s so much more now. And of late, for those of you that collect, we’ve expanded al…
LONELY.
Hey, Vsauce Michael here, and I am back in New York City. And today, we’re going to talk about loneliness. But first, I just learned this yesterday. Bear Grylls, the host of Man vs. Wild, has three sons, and I’m not kidding, their names are Jesse, Huckle…
Dark Matter: The Unknown Force
A quick thanks to Squarespace for sponsoring this video! What if I told you that your entire life, everything you’ve ever seen, everyone you’ve ever met, every cluster of galaxies, stars, our planet, only makes up for less than 5% of the entire universe?…