yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Comparing exponential and linear function


4m read
·Nov 11, 2024

Company A is offering ten thousand dollars for the first month and will increase the amount each month by five thousand dollars. Company B is offering five hundred dollars for the first month and will double their payment each month. For which monthly payment will Company B's payment first exceed Company A's payment?

So pause this video and try to work that out.

All right, let's work this out together. So, let me set up a little bit of a table. The first column is month. The second column is how much Company A is going to pay, and then the third column—let's think about how much Company B is going to pay.

Well, they tell us a few things. They say Company A is offering ten thousand dollars for the first month. So, in month one, Company A is offering ten thousand dollars. We'll assume—well, I'll just write the dollars there.

And then Company B is offering five hundred dollars for the first month, five hundred dollars for the first month. But then they tell us Company A is offering—well, we'll increase the amount each month by 5,000. So, month two will be 5,000 more. We'll get to fifteen thousand.

Month three, we'll get to— we'll get to twenty thousand dollars. Month four, we'll get to twenty-five thousand dollars. Month five, I think you get the point. We'll get to thirty thousand dollars. Month six, we'll get to thirty-five thousand dollars.

Month seven, we'll get to forty thousand dollars. Let me scroll down a little bit. Month eight, I'll stop there. Month eight, we will get to forty-five thousand dollars.

Now, let me extend these lines a little bit. Now let's think about what's going to happen with Company B. Company B is offering five hundred for the first month but will double their payment each month. So, the second month is going to be double that—so that's going to be one thousand dollars.

Then we're gonna double that again—two thousand dollars. We're gonna double that again—four thousand dollars. Double that again—eight thousand dollars. Then we double that again—sixteen thousand dollars.

Double that again—thirty-two thousand dollars. Double that—oh, if I skipped one, I went from four thousand to sixteen thousand—four thousand, eight thousand dollars. Then we double it again—sixteen thousand dollars again. Thirty-two— I sound like my two-year-old again.

All right—thirty-two thousand. Then we get to sixty-four thousand. At that point, something interesting happens. Actually, good that I went to the eighth month because every month before the eighth month, Company A's payment was higher.

Until that eighth month, in that eighth month, Company B is going to pay more. So, first we can just answer their question for which monthly payment will Company B's payment first exceed Company A's payment? Well, that is month eight.

Month eight. And there's a broader lesson going on here. You might recognize that the rate at which Company A's payment is increasing is linear. Every month it increases by the same amount—so plus five thousand, plus five thousand.

It increases by five thousand, the same amount. Company B is increasing exponentially. It's increasing by the same factor every time. So, we're multiplying by the same value every time—we're multiplying by two.

We're multiplying by two, multiplying by two. And so there's actually a very interesting thing here that you can make the general statement that an exponential function will want—something that is exponentially increasing will eventually always surpass something that is linearly increasing.

And it doesn't matter what the initial situation is. It also doesn't even matter that rate of exponential increase. It will eventually always pass up something that's increasing linearly.

You could think about that visually if you like. If I were to draw a visual function, a linear function—this is the x-axis, this is the y-axis. A linear function—well, it's going to be described by a line. So, it could look something like this—a linear function is always going to be a line of some slope.

An exponential function, even though it might start a little bit slower, it's eventually—it's eventually going to pass up the linear function. This is going to be the case even if the linear function has a pretty high slope or pretty high starting point.

If it's something like that, and even if the exponential function is starting pretty slow, it will eventually—and even if it's compounding or growing relatively slow—but exponentially, if it's growing two percent or three percent, it still will eventually pass up the linear function, which is pretty cool.

More Articles

View All
Reddit Analysis: Top 10 Coins For Each Year
Reddit users have recently and separately posted their full analysis, cumulatively dating back to 2013, identifying the biggest gainers and losers across 2,000 different cryptocurrencies to find a way to index the entire market that gives you the best cha…
Khanmigo: Co-create a Rubric Activity
This is Kigo, an AI-powered guide designed to help all students learn. Conmigo is not just for students; teachers can use Conmigo too by toggling from the student mode to teacher mode in any course. Teachers can always access Kigo by selecting the AI acti…
Why The Stock Market Will Keep Falling
What’s up, guys? It’s Graham here. So, it seems as though every few months there’s a new major shift in the market that continues to pull prices from one side to another. This week, we might just have the next major catalyst that would completely change t…
Noble’s Story | How Khan Academy helped me get into my dream college
That was one of the best days of my life. Honestly, like signing day, I just knew that all the hard work that I put into this dream finally paid off. I’m Noble; I’m a freshman at Brown University. I’m a receiver on the football team. It became apparent t…
How to Make Money on YouTube from Day 1 (Without Ads, Subs or Sponsorships)
Speaker: Many people think they need to build an audience first to make money on YouTube, but that’s actually not the only way. You can make money from the beginning, even with less than thousand subs and views. And you can do this without relying on YouT…
Analyzing unbounded limits: rational function | AP Calculus AB | Khan Academy
Let f of x be equal to negative 1 over x minus 1 squared. Select the correct description of the one-sided limits of f at x equals 1. And so we can see we have a bunch of choices where we’re approaching x from the right-hand side and we’re approaching x f…