yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Powers of products & quotients (integer exponents) | Mathematics I | High School Math | Khan Academy


4m read
·Nov 11, 2024

Do some example raising exponents or products of exponents to various powers, especially when we're dealing with integer exponents.

So let's say we have (3^8 \cdot 7^{3}), and we want to raise that to the (-2) power. I want you to pause this video and see if you could simplify this on your own.

The key realization here—there's a couple of ways that you can tackle it, but the key thing to realize is if you have the product of two things and then you're raising that to some type of an exponent, that is going to be the same thing as raising each of these things to that exponent and then taking the product.

So, this is going to be the same thing as (3^8) to the (-2) times (7^{3}) to the (-2). I'll do (7^{3}) right over here. If I want to simplify this (3^8) to the (-2), we have the other exponent property that if you're raising to an exponent and then raising that whole thing to another exponent, then you can just multiply the exponents.

So this is going to be (3^{-8 \cdot -2}). Well, (8 \cdot -2) is (16), so this is going to be (3^{16}) right over there. Then this part right over here, (7^{3}) to the (-2), that's going to be (7^{3 \cdot -2}), which is (7^{-6}) power.

So that is (7^{-6}), and this would be about as much as you could simplify it. You could rewrite it different ways: (7^{-6}) is the same thing as (\frac{1}{7^{6}}). So you could write it like (\frac{3^{16}}{7^{6}}). But these two are equivalent, and there are other ways that you could have tackled this.

You could have said that this original thing right over here, this is the same thing as (3^{8}) is the same thing as (\frac{1}{3^{8}}), so you could have said that this is the same thing as (\frac{7^{3}}{3^{8}}) and then you're raising that to the (-2), in which case you would raise this numerator to the (-2) and the denominator to the (-2), but you would have gotten to the exact same place.

Let's do another one of these. So let's say, let me, so let's say that we have (a^{-2} \cdot 8^{7}) and we want to raise all of that to the second power. Well, like before, I can raise each of these things to the second power, so this is the same thing as (a^{-2}) to the (2) power times this thing to the second power (8^{7}) to the (2) power.

Then here, (-2 \cdot 2) is (-4), so that's (a^{-4} \cdot 8^{7 \cdot 2}) which is (8^{14}). In other videos, we go into more depth about why this should hopefully make intuitive sense. Here you have (8^{7} \cdot 8^{7}), well you would then add the two exponents, and you would get to (8^{14}).

So, however many times you have (8^{7}), you would just keep adding the exponents or you would multiply by seven that many times. Hopefully, that didn't sound too confusing, but the general idea is if you raise something to an exponent and then another exponent, you can multiply those exponents.

Let's do one more example where we are dealing with quotients, which that first example could have even been perceived as. So let’s say we have (2^{-10} \div 4^{2}) and we're going to raise all of that to the seventh power.

Well, this is equivalent to (\frac{2^{-10}}{4^{2}}) raised to the seventh power. So if you have the difference of two things and you're raising it to some power, that's the same thing as the numerator raised to that power divided by the denominator raised to that power.

Well, what's our numerator going to be? Well, we've done this drill before: it would be (2^{-10 \cdot 7}) so this would be equal to (2^{-70}). And then in the denominator (4^{2}) raised to the seventh power.

Well, (2 \cdot 7) is (14), so that's going to be (4^{14}) power. Now we actually could think about simplifying this even more. There are multiple ways that you could rewrite this, but one thing you could do is say, “Hey look, two (4)s are a power of two.”

So you could rewrite this as (2^{-70}) over instead of writing (4^{14}) power. Why did I write (14)th power? It should be (4^{14}) power. Let me correct that: instead of writing (4^{14}) power, I instead could write...

So, this is (2^{-70}) over instead of writing (4) I could write (2^{2}) to the (14)th power. (4) is the same thing as (2^{2}). And so now I can rewrite this whole thing as (2^{-70}) over, well, (2^{2}) then that to the (14)th power that's (2^{28}) power.

So can I simplify this even more? Well, this is going to be equal to... If I'm taking a quotient with the same base, I can subtract the exponents. So it's going to be (-70 - 28) which is (-98). And so this is going to simplify (2^{-98}) power, and that's another way of viewing the same expression.

More Articles

View All
...And We'll Do it Again
Qus Gazar is lying to you in every video, even in this one, because our videos distill very complex subjects into flashy 10-minute pieces. Unfortunately, reality is well complicated. The question of how we deal with that is central to what we do on this c…
Implanting Memories | Breakthrough
My work focuses on finding individual memories in the brain and actually turning them on or off. We had a series of projects where we started off by asking really simply: can we go in and can we just find a memory in the brain? Can we isolate a memory in …
Types of RICH PEOPLE
You know, Alex, so many people think that rich people are all the same, but it’s just not quite true. Not all wealth is created or spent equally. So today, we’re talking about the 15 types of rich people. Welcome to Alux, the place where future billionair…
Hindu gods overview | World History | Khan Academy
Hinduism is often known for its large and complex pantheon of gods. The goal of this video is to give an overview of them and to think about how they are connected and how they are perceived. So, the Hindu Trinity, as it is often called, is made up of Sh…
Parent Quick-Start Tips: For Kids Ages 12 and Under
Hi, I’m Lauren from Khan Academy, and today I’m going to give you an overview of how to set up accounts for yourself and your children on Khan Academy. We’ll also go over how you can find relevant content for your kids and view their progress. This video …
Federalism in the United States | US government and civics | Khan Academy
What we’re going to do in this video is talk about the idea of federalism, which is core to the United States government. Now, federalism, the word originates, its root comes from the Latin word “fetus,” which I’m probably not pronouncing perfectly, but …