yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Powers of products & quotients (integer exponents) | Mathematics I | High School Math | Khan Academy


4m read
·Nov 11, 2024

Do some example raising exponents or products of exponents to various powers, especially when we're dealing with integer exponents.

So let's say we have (3^8 \cdot 7^{3}), and we want to raise that to the (-2) power. I want you to pause this video and see if you could simplify this on your own.

The key realization here—there's a couple of ways that you can tackle it, but the key thing to realize is if you have the product of two things and then you're raising that to some type of an exponent, that is going to be the same thing as raising each of these things to that exponent and then taking the product.

So, this is going to be the same thing as (3^8) to the (-2) times (7^{3}) to the (-2). I'll do (7^{3}) right over here. If I want to simplify this (3^8) to the (-2), we have the other exponent property that if you're raising to an exponent and then raising that whole thing to another exponent, then you can just multiply the exponents.

So this is going to be (3^{-8 \cdot -2}). Well, (8 \cdot -2) is (16), so this is going to be (3^{16}) right over there. Then this part right over here, (7^{3}) to the (-2), that's going to be (7^{3 \cdot -2}), which is (7^{-6}) power.

So that is (7^{-6}), and this would be about as much as you could simplify it. You could rewrite it different ways: (7^{-6}) is the same thing as (\frac{1}{7^{6}}). So you could write it like (\frac{3^{16}}{7^{6}}). But these two are equivalent, and there are other ways that you could have tackled this.

You could have said that this original thing right over here, this is the same thing as (3^{8}) is the same thing as (\frac{1}{3^{8}}), so you could have said that this is the same thing as (\frac{7^{3}}{3^{8}}) and then you're raising that to the (-2), in which case you would raise this numerator to the (-2) and the denominator to the (-2), but you would have gotten to the exact same place.

Let's do another one of these. So let's say, let me, so let's say that we have (a^{-2} \cdot 8^{7}) and we want to raise all of that to the second power. Well, like before, I can raise each of these things to the second power, so this is the same thing as (a^{-2}) to the (2) power times this thing to the second power (8^{7}) to the (2) power.

Then here, (-2 \cdot 2) is (-4), so that's (a^{-4} \cdot 8^{7 \cdot 2}) which is (8^{14}). In other videos, we go into more depth about why this should hopefully make intuitive sense. Here you have (8^{7} \cdot 8^{7}), well you would then add the two exponents, and you would get to (8^{14}).

So, however many times you have (8^{7}), you would just keep adding the exponents or you would multiply by seven that many times. Hopefully, that didn't sound too confusing, but the general idea is if you raise something to an exponent and then another exponent, you can multiply those exponents.

Let's do one more example where we are dealing with quotients, which that first example could have even been perceived as. So let’s say we have (2^{-10} \div 4^{2}) and we're going to raise all of that to the seventh power.

Well, this is equivalent to (\frac{2^{-10}}{4^{2}}) raised to the seventh power. So if you have the difference of two things and you're raising it to some power, that's the same thing as the numerator raised to that power divided by the denominator raised to that power.

Well, what's our numerator going to be? Well, we've done this drill before: it would be (2^{-10 \cdot 7}) so this would be equal to (2^{-70}). And then in the denominator (4^{2}) raised to the seventh power.

Well, (2 \cdot 7) is (14), so that's going to be (4^{14}) power. Now we actually could think about simplifying this even more. There are multiple ways that you could rewrite this, but one thing you could do is say, “Hey look, two (4)s are a power of two.”

So you could rewrite this as (2^{-70}) over instead of writing (4^{14}) power. Why did I write (14)th power? It should be (4^{14}) power. Let me correct that: instead of writing (4^{14}) power, I instead could write...

So, this is (2^{-70}) over instead of writing (4) I could write (2^{2}) to the (14)th power. (4) is the same thing as (2^{2}). And so now I can rewrite this whole thing as (2^{-70}) over, well, (2^{2}) then that to the (14)th power that's (2^{28}) power.

So can I simplify this even more? Well, this is going to be equal to... If I'm taking a quotient with the same base, I can subtract the exponents. So it's going to be (-70 - 28) which is (-98). And so this is going to simplify (2^{-98}) power, and that's another way of viewing the same expression.

More Articles

View All
How To Make Galinstan
Let’s make some Gallon Stan. Unlike Mercury, Gallon Stan is not toxic, and it’s a liquid at room temperature. Unlike Gallium, which is solid up until about 30 Celsius, you have to hold this for a while before it starts getting drippy. No, no, no, you dese…
Personalized Stories Starring Your Kids: Khanmigo's Craft a Story! | Bedtime stories for kids
Hi parents! Are you looking to put a fresh spin on story time, or maybe you want to make bedtime more fun, engaging, and personalized? I’ve got something you’re going to love! Meet K Migo’s “Craft a Story” feature. Let me show you how it works. First, we…
Grizzlies, Wolves, and Koalas: Conservation Photography | Nat Geo Live
( intro music ) I got started just taking pictures, just taking pictures I wanted to take. And I just took pictures I thought were weird or different or interesting or funny. A cowboy roping a cat. ( audience laughter ) Could be a lady walking her dog. Ba…
POV "Kittycam" Reveals These Stray Cats Prey on More Than Birds | National Geographic
[Music] When people see a feral cat on the side of the road, they’re thinking this is akin to my cat being out there in the wild with no food, exposed to the elements, and they have a lot of compassion to want to help them. But people don’t always see tha…
Sue's Dirty Jobs - Deleted Scene | Life Below Zero
Day whatever of the journey of getting Cavic back up and running. Chuga, chugga, chuga—knocking stuff off my list. I have a little bit in here I still need to clean. I don’t have food to cook for people, but even if I wanted to make hot cereal, I can’t d…
Bill Belichick & Ray Dalio on Having Great Relationships: Part 1
Now let’s talk about partnership. Now when you’re dealing in an organization, you have the owner, you have the players. Okay, now there’s interpersonal relations. How do you deal with those interpersonal relations? Like probably, you know the question exa…