yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing two variable inequality


3m read
·Nov 11, 2024

So what I would like to do in this video is graph the inequality negative 14x minus 7y is less than 4. And like always, I encourage you to pause this video and see if you can graph it on your own before we work through it together.

So the way that I like to do this is I like to isolate a y on one side of this inequality, and I'll do it on the left-hand side. So the first thing I want to do is let's get rid of this negative 14x here on the left. The best way to do that is to add 14x, but if I do that to the left-hand side, I also want to do that on the right-hand side as well.

So I'm adding 14x to both sides, and that leaves me with these two canceling out on the left-hand side. I have negative 7y, and that's going to be less than I have 14x plus 4, or 4 plus 14x, which is 14x plus 4.

Now, I want to divide both sides by negative 7 in order to isolate this y, but we have to be very careful. When you multiply or divide both sides of an inequality by a negative number, you need to swap the inequality sign. Instead of it being less than, it would have to become greater than.

So if you divide both sides by negative 7, you are going to be left with y greater than—let me do a different color just to highlight that I'm swapping this around—y is going to be greater than 14 divided by negative 7, which is negative 2x, and then 4 divided by negative 7, well, that's negative 4/7.

And now I'm ready to graph this. The way that I would graph this, I would graph y is equal to negative 2x minus 4/7. But since we're not greater than or equal to it, I would put a dotted line there and just shade everything above that.

Let me just do what I'm talking about, so let me draw some axes here. This is going to be an approximation; obviously, this is a hand-drawn graph that we're dealing with. So just like that, that's my x-axis.

Let's see, our y-intercept is negative 4/7, which is a little bit more than a half. So let's say that this right over here is, let's say this right over here is 1—or negative 1, I should say. Actually, I think I would have to put my axis a little bit higher, so let's do it like this.

So that is x; let's make this negative one, and then that's about negative two. So this would be one, and then this is going to be right about—this is about 1, and then we have 2 right over there.

So, looking at our y-intercept when x is 0, let's first just think about what we have if we're thinking about y is equal to negative 2x minus 4/7. Well, our y-intercept right over here would be negative 4/7, which is a little bit more than a half, so it will be roughly right around there.

Then we have a slope of negative 2. We have a slope of negative 2, so if you increase by 1, you are going to decrease by 2. So you're going to decrease; you're not just going to go there; you're going to go right around there.

So let me get my ruler tool out so I can actually draw that, so I'll connect these two dots with my ruler tool. Now remember, I'm not just trying to graph y equals—and in fact, this isn't greater than or equal; it's just strictly greater than.

So let me draw a dotted line there to show that I'm actually not going to include the graph where y equals negative 2x minus 4/7. So let me do that dotted line right over there to show that I'm not—it’s not going to be equal to that.

It's all the y’s for any x that are greater than that. My spacing is getting a little sloppy, so that does the job—there you go. So that would be the line y is equal to negative 2x minus 4/7.

But I dotted lined it because this isn't greater than or equal to; if it was greater than or equal to, I would fill it in, but it's greater than to show that we don't include the line, but we want all of the region, all of the area above the line.

So let me shade that in. That's going to be all of this. Actually, I can shade it in with a nice big juicy shading. Get the right tool out. All right, here we go.

So it would be all of this area right over here would be what I would actually shade in. So once again, I don't include the line; I include everything above the line, and I am done.

More Articles

View All
No Need To Worry About A Recession!
[Music] You’ve got inflation fears out there. That is one of just many worries weighing on the averages. But in times of high volatility, you got to start looking around. Where can investors go for opportunity? Let’s bring in Kevin O’Leary. Kevin, you ar…
The age of empire | Rise to world power (1890-1945) | US History | Khan Academy
So I have a map here of United States possessions in the Pacific and in the Caribbean today, and they’re kind of all over the place. I mean, some of them are pretty tiny. There’s Guam, which is just barely a little speck on the map, and American Samoa. An…
Knowledge Makes the Existence of Resources Infinite
Knowledge is the thing that makes the existence of resources infinite. The creation of knowledge is unbounded. We’re just going to keep on creating more knowledge and thereby learning about more and different resources. There’s this wonderful parable of …
Interpreting text features | Reading | Khan Academy
Hello readers! Today I’m going to be talking about text features, which is to say the parts of a text that aren’t just words. We look at text features to get a better understanding of what the text is all about. Although they’re not words, like I said, te…
Warren Buffett Explains How To Calculate Intrinsic Value Of A Stock
Yeah, the actually Graham didn’t get too specific about intrinsic value in terms of precise calculations, but intrinsic value has come to be equated with, and I think quite properly with, what you might call private business value. Now, I’m not sure who w…
Calming an Overly Excitable Dog | Cesar Millan: Better Human Better Dog
[suspenseful music] [knock at door] Hi, Cesar! Hi, guys. How are you? Good morning! I have a surprise for your final challenge. NARRATOR: For the past month, Cesar has worked closely with the Calderones, a family of first responders, with a red-zone pit …