yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing polynomials by x (no remainders) | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

Let's say someone walks up to you on the street and they give you this expression:

x squared plus 7x plus 10 divided by x plus 2.

And they say, “See if you could simplify this thing.”

So, pause this video and see if you can do that.

One way to think about it is: what is x squared plus 7x plus 10 divided by x plus 2?

What is that going to be?

All right, now there are two ways that you could approach this. One way is to try to factor the numerator and see if it has a factor that is common to the denominator. So, let's try to do that.

We've done this many, many times. If this looks new to you, I encourage you to review factoring polynomials other places on Khan Academy.

But what two numbers add up to seven and when you multiply them you get ten?

Well, that would be two and five.

So we could rewrite that numerator as (x + 2)(x + 5).

And then, of course, the denominator you still have (x + 2).

Then we clearly see we have a common factor.

As long as x does not equal negative 2, because if x equals negative 2, this whole expression is undefined.

This is because then you get a 0 in the denominator.

So as long as x does not equal negative 2, then we can divide the numerator and the denominator by (x + 2).

Once again, the reason why I put that constraint is we can't divide the numerator and denominator by zero.

So for any other values of x, this (x + 2) will be non-zero, and we could divide the numerator and the denominator by that and they would cancel out.

We would just be left with x + 5.

So another way to think about it is that our original expression could be viewed as x + 5 for any x that is not equal to negative 2.

Now, the other way that we could approach this is through algebraic long division, which is very analogous to the type of long division that you might remember from, I believe, it was fourth grade.

So what you do is you say, “All right, I'm going to divide (x + 2) into (x squared + 7x + 10)."

In this technique, you look at the highest degree terms.

So you have an x there and an x squared there, and you say, “How many times does x go into x squared?”

Well, it goes x times.

Now you would write that in this column because x is just x to the first power.

You could view this as the first degree column.

It's analogous to the place values that we talk about when we first learn numbers or how we regroup or talk about place value.

But here you can view it as degree places or something like that.

Then you take that x and you multiply it times this entire expression.

So x times 2 is 2x.

Put that in the first degree column.

x times x is x squared.

What we want to do is subtract these things in yellow from what we originally had in blue.

So we could do it this way, and then we will be left with:

7x minus 2x is 5x, and then x squared minus x squared is just zero.

Then we can bring down this plus 10.

Once again we look at the highest degree term.

x goes into 5x five times.

That's a zero degree; it's a constant.

So I'll write it in the constant column.

5 times 2 is 10, and 5 times x is 5.

Then I'll subtract these from what we have up here, and notice we have no remainder.

What's interesting about algebraic long division, we'll probably see in another video or two, is that you can actually have a remainder.

Those are going to be situations where just the factoring technique alone would not have worked.

In this situation, this model would have been easier.

But this is another way to think about it:

You say, “Hey, look, (x + 2)(x + 5) is going to be equal to this.”

Now, if you wanted to rewrite this expression the way we did here and say, “Hey, this expression is equal to x + 5,” we would have to constrain the domain.

You'd say, “Hey, for all x's not equaling negative 2 for these to be completely identical expressions.”

More Articles

View All
Metallic bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
Now the last type of bond I’m going to talk about is known as the metallic bond, which I think I know a little bit about because I was the lead singer of a metallic bond in high school. I’ll talk about that in future videos, but let’s just take one of our…
Are There Lost Alien Civilizations in Our Past?
When we think about alien civilizations, we tend to look into the vastness of space, to far away planets. But there is another incredibly vast dimension that we might be giving too little thought to: time. Could it be that, over the last hundreds of milli…
TRAIN YOUR MIND TO RESPOND, NOT REACT | STOIC PHILOSOPHY
Imagine that you have the power right now to turn the hardest things in your life into the biggest wins. You might ask, but how? Today we’ll go right to the heart of stoicism, an old philosophy that has helped people get through hard times and find peace …
Warren Buffett, Chairman, Berkshire Hathaway Investment Group | Terry Leadership Speaker Series
Good morning. It certainly got quiet quickly. That surprised me. Can you hear me? Are you there? Back well for business school, you know, it doesn’t get much better than this. Having the world’s greatest investor come to our campus is quite a bore. Office…
Getting Started with Khan Academy and Khan Academy Kids for Remote Learning
All right, hello everybody, and thank you all for taking time out of what’s got to be an incredibly busy day to join us for this webinar. My name is Karen White, and I’m on the product team here at Khan Academy. I’m also the mother of two girls, ages 12 a…
What Does An Astronaut Dream About? | Short Film Showcase
On the odd occasion that I do remember my dreams, and quite often I have a dream where I’m back in space. I’m floating down one of the very long mere modules, so I would be going past. It’s a nice sort of slow rate, really sedate. Then there’s a window a…