yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Dividing polynomials by x (no remainders) | Algebra 2 | Khan Academy


3m read
·Nov 11, 2024

Let's say someone walks up to you on the street and they give you this expression:

x squared plus 7x plus 10 divided by x plus 2.

And they say, “See if you could simplify this thing.”

So, pause this video and see if you can do that.

One way to think about it is: what is x squared plus 7x plus 10 divided by x plus 2?

What is that going to be?

All right, now there are two ways that you could approach this. One way is to try to factor the numerator and see if it has a factor that is common to the denominator. So, let's try to do that.

We've done this many, many times. If this looks new to you, I encourage you to review factoring polynomials other places on Khan Academy.

But what two numbers add up to seven and when you multiply them you get ten?

Well, that would be two and five.

So we could rewrite that numerator as (x + 2)(x + 5).

And then, of course, the denominator you still have (x + 2).

Then we clearly see we have a common factor.

As long as x does not equal negative 2, because if x equals negative 2, this whole expression is undefined.

This is because then you get a 0 in the denominator.

So as long as x does not equal negative 2, then we can divide the numerator and the denominator by (x + 2).

Once again, the reason why I put that constraint is we can't divide the numerator and denominator by zero.

So for any other values of x, this (x + 2) will be non-zero, and we could divide the numerator and the denominator by that and they would cancel out.

We would just be left with x + 5.

So another way to think about it is that our original expression could be viewed as x + 5 for any x that is not equal to negative 2.

Now, the other way that we could approach this is through algebraic long division, which is very analogous to the type of long division that you might remember from, I believe, it was fourth grade.

So what you do is you say, “All right, I'm going to divide (x + 2) into (x squared + 7x + 10)."

In this technique, you look at the highest degree terms.

So you have an x there and an x squared there, and you say, “How many times does x go into x squared?”

Well, it goes x times.

Now you would write that in this column because x is just x to the first power.

You could view this as the first degree column.

It's analogous to the place values that we talk about when we first learn numbers or how we regroup or talk about place value.

But here you can view it as degree places or something like that.

Then you take that x and you multiply it times this entire expression.

So x times 2 is 2x.

Put that in the first degree column.

x times x is x squared.

What we want to do is subtract these things in yellow from what we originally had in blue.

So we could do it this way, and then we will be left with:

7x minus 2x is 5x, and then x squared minus x squared is just zero.

Then we can bring down this plus 10.

Once again we look at the highest degree term.

x goes into 5x five times.

That's a zero degree; it's a constant.

So I'll write it in the constant column.

5 times 2 is 10, and 5 times x is 5.

Then I'll subtract these from what we have up here, and notice we have no remainder.

What's interesting about algebraic long division, we'll probably see in another video or two, is that you can actually have a remainder.

Those are going to be situations where just the factoring technique alone would not have worked.

In this situation, this model would have been easier.

But this is another way to think about it:

You say, “Hey, look, (x + 2)(x + 5) is going to be equal to this.”

Now, if you wanted to rewrite this expression the way we did here and say, “Hey, this expression is equal to x + 5,” we would have to constrain the domain.

You'd say, “Hey, for all x's not equaling negative 2 for these to be completely identical expressions.”

More Articles

View All
Tuna Gremlin | Wicked Tuna
Yo, there he is on the down! Rod, oh my God, got him on! Got him on, get him on, get up there! Got him on, wo! Come off on the bite. Oh dude, what happened that time? There’s no weight, no nothing. I don’t know—we’re at the bottom of the fleet, and we’re…
Why Don't We Shoot Nuclear Waste Into Space?
Here in the Kotart Labs, we test very important ideas to see what happens when you blow things up or play with black holes. Many of you suggested that we look into an idea that sounds reasonable: shooting nuclear waste into space. It’s one of those concep…
Why Society Peaked in 2016
In many ways, the world sucks right now. We’re more divided than we’ve ever been. There’s more chaos, war, and unrest all around the globe. Smartphones and social media that used to act as an escape have turned into digital prisons, trapping us into an en…
Crypto Will Go Back Up | Converge 2022
Bitcoin down, Twitter below 20,000. We have a slew of, uh, crypto CEOs that are resigning. Those are the signals right now. It feels pretty bad. Why are you bullish? What are the bullish signs that you’re seeing? [Music] [Applause] [Music] Kevin, you fu…
Khan Academy Live: AP US History
E hey! I’m Kim, and welcome to our AP US History live study session at Khan Academy. So, the exam is this Friday, May 5th, and I would like to take some time with you over the next hour to talk through some of the major ideas that will kind of help you ma…
The Role of Role Models | StarTalk
[Music] It’s often said that it’s easier to be something if you can see it; if you can imagine yourself in that position. Role models have always played an important role in that. Role models have that role. I have a slightly contrarian view of role mode…