yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding derivative with fundamental theorem of calculus: chain rule | AP®︎ Calculus | Khan Academy


2m read
·Nov 10, 2024

Let's say that we have the function capital F of x, which we're going to define as the definite integral from 1 to sine of x. So that's an interesting upper bound right over there of 2t minus 1, and of course dt.

What we are curious about is trying to figure out what is F prime of x going to be equal to. So pause this video and see if you can figure that out.

All right, so some of you might have been a little bit challenged by this notion of, hey, instead of an x on this upper bound, I now have a sine of x. If it was just an x, I could have used the fundamental theorem of calculus. Just to review that, if I had a function, let me call it h of x, if I have h of x that was defined as the definite integral from 1 to x of 2t minus 1 dt, we know from the fundamental theorem of calculus that h prime of x would be simply this inner function with the t replaced by the x. It would just be 2x minus 1. Pretty straightforward.

But this one isn't quite as straightforward. Instead of having an x up here, our upper bound is a sine of x. So one way to think about it is if we were to define g of x as being equal to sine of x, our capital F of x can be expressed as capital F of x is the same thing as h of, instead of an x everywhere we see an x, we're replacing it with a sine of x. So it's h of g of x. You can see the g of x right over there, so you replace x with g of x for where in this expression you get h of g of x, and that is capital F of x.

Now, why am I doing all of that? Well, this might start making you think about the chain rule because if this is true, then that means that capital F prime of x is going to be equal to h prime of g of x times g prime of x.

And so, what would that be? Well, we already know what h prime of x is, so let me do this in another color. This part right over here is going to be equal to everywhere we see an x here, we'll replace with the g of x. So it's going to be 2 times sine of x, and then minus 1. This is this right over here.

And then what's g prime of x? g prime of x, well, g prime of x is just, of course, the derivative of sine of x, which is cosine of x. So this part right over here is going to be cosine of x.

And we could keep going, we could try to simplify this a little bit or rewrite it in different ways, but there you have it.

More Articles

View All
New Hampshire Summer Learning Series Session 1: The Student Khanmigo Experience
All right, well good morning everyone. Um, welcome to the first of our series of the New Hampshire summer learning series, and my name is Danielle Sullivan. Um, I’m excited I’ve met actually many of you, so hello nice to meet you again. Um, and for those …
Why We're Jerks Online
Hello everyone! October 2019 is over, which means that it’s time for the next Q&A. As most of you know, there’s a Patreon edition and a public edition. In this public edition, I’ll talk about the effect of the internet in regards to the shadow, which …
TRUE Limits Of Humanity – The Final Border We Will Never Cross
Is there a border we will never cross? Are there places we will never reach no matter how hard we try? It turns out there are. Even with sci-fi technology, we are trapped in a limited pocket of the universe and the finite stuff within it. How much univers…
Frank Drake’s Cosmic Road Map | Podcast | Overheard at National Geographic
It’s Halloween 1961. Ten of the world’s leading scientists have found their way to a remote spot in the Allegheny Mountains. They’re there in secret to talk about searching for aliens. Okay, hang on, this isn’t the beginning of a Twilight Zone episode. Th…
High Speed video of Canon DSLR Shutter - Smarter Every Day 40
Hey, it’s me Destin. Welcome to Smarter Every Day, and a blood vessel exploded in my eye. It’s pretty cool. It’s called a subconjunctival hemorrhage. I think it’s pretty neat. Anyway, so today I’m gonna show you a little experiment that I’m doing right b…
Feeding the Cheetah Triplets | Magic of Disney's Animal Kingdom
I don’t go to the gym very often. It’s a real workout. Gotta come and shift the girls in. So every single day we’re doing this trek in the land of Africa. Five-year-old cheetah triplets Maathai, Murie, and Fossey wait for keeper Dominique to serve breakf…