yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determining if a function is invertible | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

  • [Voiceover] "F is a finite function whose domain is the letters a to e. The following table lists the output for each input in f's domain."

So if x is equal to a, then if we input a into our function, then we output -6. f of a is -6. We input b, we get three; we input c, we get -6; we input d, we get two; we input e, we get -6.

"Build the mapping diagram for f by dragging the endpoints of the segments in the graph below so that they pair each domain element with its correct range element. Then, determine if f is invertible."

Alright, so let's see what's going on over here. Let me scroll down a little bit more. So in this purple oval, this is representing the domain of our function f, and this is the range. The function is going to, if you give it a member of the domain, it's going to map from that member of the domain to a member of the range.

So, for example, you input a into the function; it goes to -6. So a goes to -6, so I drag that right over there. b goes to three; c goes to -6. So it's already interesting that we have multiple values that point to -6. This is okay for f to be a function, but we'll see it might make it a little bit tricky for f to be invertible.

So let's see, d points to two, or maps to two. So you input d into our function, you're going to output two, and then finally, e maps to -6 as well. e maps to -6 as well.

So, that's a visualization of how this function f maps from a through e to members of the range, but also ask ourselves, "Is this function invertible?" And I already hinted at it a little bit.

Well, in order for it to be invertible, you need a function that could take each of these points to do the inverse mapping. But it has to be a function. So, if you input three into this inverse function, it should give you b. If you input two into this inverse function, it should output d. If you input -6 into this inverse function, well, this hypothetical inverse function: what should it do?

Well, you can't have a function that, if you input one, if you input a number, it could have three possible values: a, c, or e. You can only map to one value. So there isn't, you actually can't set up an inverse function that does this because it wouldn't be a function. You can't go from input -6 into that inverse function and get three different values. So this is not invertible.

Let's do another example. So here, this is the same drill. We have our members of our domain, members of our range. We can build our mapping diagram. a maps to -36; b maps to nine; c maps to -4; d maps to 49; and then finally, e maps to 25. e maps to 25.

Now, is this function invertible? Well, let's think about it. The inverse—oops, was it d maps to 49? So, let's think about what the inverse, this hypothetical inverse function, would have to do. It would have to take each of these members of the range and do the inverse mapping.

So if you input 49 into our inverse function, it should give you d. Input 25, it should give you e. Input nine, it gives you b. You input -4, it inputs c. You input -36, it gives you a. So you could easily construct an inverse function here.

So this is very much, this is very much invertible. One way to think about it is this is a one-to-one mapping. Each of the members of the domain correspond to a unique member of the range. You don't have two members of the domain pointing to the same member of the range.

Anyway, hopefully, you found that interesting.

More Articles

View All
Voting rights | Political participation | US government and civics | Khan Academy
In this video, we’re going to do a brief overview of how amendments to the Constitution and federal legislation have increased voting rights over time. Now, why does this matter? Apart from just the innate value of voting rights in a democracy, it matter…
Heat transfer | Thermodynamics | High school physics | Khan Academy
All right, so I don’t know about you, but I feel like talking about pizza. It’s pizza night over here. I am smelling pizza as it’s in the oven. It’s on my mind, and I know we’re supposed to be talking about heat and thermal equilibrium, but I think we can…
Fundraising Panel at Female Founders Conference 2014
Okay everyone, we’re going to now have a slightly different format for the next, uh, 30 minutes. We’re going to have a discussion amongst these four YC female founders about their fundraising experiences. Um, so hopefully there will be lots of interesting…
Answering Presuppositionalism: Basic
Theists who subscribe to the presuppositionalist school of thought say that atheists can’t account for inductive reasoning. They claim that, in fact, whenever an atheist uses inductive reasoning, she is borrowing from the Christian worldview, because acco…
Definite integral of trig function | AP Calculus AB | Khan Academy
So let’s see if we can evaluate the definite integral from ( \frac{11\pi}{2} ) to ( 6\pi ) of ( 9 \sin(x) \, dx ). The first thing, let’s see if we can take the anti-derivative of ( 9 \sin(x) ). We could use some of our integration properties to simplify…
What Does God Look Like to You? | Brain Games
For many people, God is the strongest belief they have. But how does your brain conceive of the very idea of God? What happens when you actually try to draw the Divine? Dr. Andrew Newberg from Jefferson University Hospital has been trying to figure that o…