yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying rational expressions: two variables | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can simplify this expression, and like always, pause the video and have a go at it. Now, this one is interesting because it involves two variables, but it's really the same ideas that we've done when we factored things with one variable.

So, for example, up here in the numerator, well, I never like having a non-one coefficient on the second degree term. I mean, sometimes you have to, but it looks like every term here is divisible by five. So let's factor out a five first. The numerator I can rewrite as five times... five times, you factor out a five here, you get x; factor out a five here, you get plus 4. Actually, I'm going to rewrite it as 4YX, and you'll see in a second why I'm doing that.

Actually, I'll tell you why I'm doing that right now. Why I'm writing the Y there is that this way it seems to hit the pattern of how we're used to seeing quadratics. So, let's see. You have X plus 4YX; you can view the 4Y as a coefficient on the first-degree X term right over there, plus 4Y^2. And it's going to be over... over, now the denominator here; can we factor this out?

Well, let's just think about it. Do we know two numbers, or I guess you could say do we know two expressions, that when you multiply them you get -6Y^2 and then when you add them, you get -Y? That's actually why I liked writing it like this. So, actually, let me rewrite this. This is the same thing as negative YX, and so you can view the coefficient here as -1Y.

Now, we need to think of two numbers, or two expressions, A and B, that are equal to -6Y^2, and when I add them A + B, I get -Y. So, you can imagine both of them are going to be expressions that involve Y. Let's see if this was just a -1 and if this is just a -6. Well, we would do -3 and positive 2.

Let's see if we did -3Y and positive 2Y. That indeed is going to be equal to -6Y^2, and -3Y + 2Y does indeed equal -Y. So that's our A and B right over there. If it seems a little mysterious how I just all of a sudden got -2Y or -3Y and positive 2Y, let me write an analogous quadratic here that only has one variable.

If I were to write X^2 - X - 6 and I were to ask you to factor that out, you'd say, "Oh, okay, well, this is going to be -2; I have -3 * 2, which is -6, and if I add them, well, that's going to be -1." So you would say, "Well, that's going to be X - 3 and X + 2." The only difference between this and that is instead of having just a negative one here, you have a -1Y. Instead of having just a 6 here, you have a -6Y^2.

So you could just think of this instead of just -3 and positive 2 as -3Y and positive 2Y. Hopefully, that makes sense, and if it doesn't, I encourage you to kind of play around with this, multiply these out a little bit, and get a little bit more familiar with this.

But now that we know that it can be factored like this, let's rewrite this. This is going to be X - 3Y times X + 2Y. Nothing seems to simplify out just yet, but it looks like what we have in magenta here could be simplified further, and we're going to do a very similar exercise to what we did just now.

What two expressions, if I multiply them, I get 4Y^2, and if I add them, I get 4Y? It looks like 2Y would do the trick. So, it seems like we can rewrite the numerator. This is going to be, let me draw a little line here to make it clear that this is going to be equal to 5 times (X + 2Y) times (X + 2Y).

Once again, 2Y times 2Y is 4Y^2, and 2Y + 2Y is 4Y. That's all going to be over... that is all going to be over (X - 3Y)(X + 2Y). So now, I have a common factor (X + 2Y) in both the numerator and the denominator.

So I can cancel (X + 2Y) / (X + 2Y). Well, that's just going to be one if we assume that (X + 2Y) does not equal zero. That's actually an important constraint because once we cancel this out, you lose that information.

If you want this to be algebraically equivalent, we could say that (X + 2Y) cannot be equal to zero. Alternatively, you could say that X cannot be equal to -2Y. I just subtracted 2Y from both sides there. So what you're left with, and we can redistribute this five if we want to write it out in expanded form, we could rewrite it as the numerator would be 5X + 10Y, and the denominator is X - 3Y.

But once again, if we want it to be algebraically equivalent, we would have to say X cannot be equal to -2Y. Now this is algebraically equivalent to what we had up here, and you can argue that it's a little bit simpler.

More Articles

View All
Frogs Come Alive After Winter Thaw | National Geographic
NARRATOR: While the rivers and ponds are melting, the ground remains frozen. And under the leaf litter, someone is pulling off a miracle. [intriguing music] This wood frog is frozen solid. Even his eyes are iced over. There’s no pulse, no breath. Slowly t…
Warren Buffett's Timeless Investing Wisdom – 1988 Interview
To meet the wizard of Omaha, Warren Buffett, next on Adam Smith’s Money World. He doesn’t generally do interviews, but I called on him recently to get some of the wisdom and apherisms of Warren Buffett on the record. It is characteristic of Warren that he…
Balloons on the River - (Decatur - Sufjan Stevens) Alabama Jubilee
One two three [Music] four. Our stepmom, we did everything to hate her. She took us down to the edge of the theater. We saw the lion and the kangaroo. Take her down to the river where they call the wild. [Music] Alligator singing man overflow C the mudl o…
The Lasting Scars of War | No Man Left Behind
[Music] When I joined the regiment, you read about SAS history, and um, I can remember uh reading a story about a guy called uh Jordi Silico. He held the record for walking through the desert in North Africa, and it was 100 miles. It was the longest escap…
Uranus 101 | National Geographic
[Angeli] In ancient times, humans studied the night sky and discovered the worlds of Mercury, Venus, Mars, Jupiter, and Saturn. But beyond this realm of knowledge, another world shined brightly, just waiting to be discovered. Uranus is the seventh plane…
3 tips for finding a job on YC's Work at a Startup
[Music] [Applause] [Music] [Applause] Thanks for joining Y Combinator’s Work at a Startup and welcome to the YSE network. I’m Ryan and I’m here to help you find your dream job. Y Combinator is an accelerator that has invested in companies like Coinbase, …