yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying rational expressions: two variables | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can simplify this expression, and like always, pause the video and have a go at it. Now, this one is interesting because it involves two variables, but it's really the same ideas that we've done when we factored things with one variable.

So, for example, up here in the numerator, well, I never like having a non-one coefficient on the second degree term. I mean, sometimes you have to, but it looks like every term here is divisible by five. So let's factor out a five first. The numerator I can rewrite as five times... five times, you factor out a five here, you get x; factor out a five here, you get plus 4. Actually, I'm going to rewrite it as 4YX, and you'll see in a second why I'm doing that.

Actually, I'll tell you why I'm doing that right now. Why I'm writing the Y there is that this way it seems to hit the pattern of how we're used to seeing quadratics. So, let's see. You have X plus 4YX; you can view the 4Y as a coefficient on the first-degree X term right over there, plus 4Y^2. And it's going to be over... over, now the denominator here; can we factor this out?

Well, let's just think about it. Do we know two numbers, or I guess you could say do we know two expressions, that when you multiply them you get -6Y^2 and then when you add them, you get -Y? That's actually why I liked writing it like this. So, actually, let me rewrite this. This is the same thing as negative YX, and so you can view the coefficient here as -1Y.

Now, we need to think of two numbers, or two expressions, A and B, that are equal to -6Y^2, and when I add them A + B, I get -Y. So, you can imagine both of them are going to be expressions that involve Y. Let's see if this was just a -1 and if this is just a -6. Well, we would do -3 and positive 2.

Let's see if we did -3Y and positive 2Y. That indeed is going to be equal to -6Y^2, and -3Y + 2Y does indeed equal -Y. So that's our A and B right over there. If it seems a little mysterious how I just all of a sudden got -2Y or -3Y and positive 2Y, let me write an analogous quadratic here that only has one variable.

If I were to write X^2 - X - 6 and I were to ask you to factor that out, you'd say, "Oh, okay, well, this is going to be -2; I have -3 * 2, which is -6, and if I add them, well, that's going to be -1." So you would say, "Well, that's going to be X - 3 and X + 2." The only difference between this and that is instead of having just a negative one here, you have a -1Y. Instead of having just a 6 here, you have a -6Y^2.

So you could just think of this instead of just -3 and positive 2 as -3Y and positive 2Y. Hopefully, that makes sense, and if it doesn't, I encourage you to kind of play around with this, multiply these out a little bit, and get a little bit more familiar with this.

But now that we know that it can be factored like this, let's rewrite this. This is going to be X - 3Y times X + 2Y. Nothing seems to simplify out just yet, but it looks like what we have in magenta here could be simplified further, and we're going to do a very similar exercise to what we did just now.

What two expressions, if I multiply them, I get 4Y^2, and if I add them, I get 4Y? It looks like 2Y would do the trick. So, it seems like we can rewrite the numerator. This is going to be, let me draw a little line here to make it clear that this is going to be equal to 5 times (X + 2Y) times (X + 2Y).

Once again, 2Y times 2Y is 4Y^2, and 2Y + 2Y is 4Y. That's all going to be over... that is all going to be over (X - 3Y)(X + 2Y). So now, I have a common factor (X + 2Y) in both the numerator and the denominator.

So I can cancel (X + 2Y) / (X + 2Y). Well, that's just going to be one if we assume that (X + 2Y) does not equal zero. That's actually an important constraint because once we cancel this out, you lose that information.

If you want this to be algebraically equivalent, we could say that (X + 2Y) cannot be equal to zero. Alternatively, you could say that X cannot be equal to -2Y. I just subtracted 2Y from both sides there. So what you're left with, and we can redistribute this five if we want to write it out in expanded form, we could rewrite it as the numerator would be 5X + 10Y, and the denominator is X - 3Y.

But once again, if we want it to be algebraically equivalent, we would have to say X cannot be equal to -2Y. Now this is algebraically equivalent to what we had up here, and you can argue that it's a little bit simpler.

More Articles

View All
3 Stoic Ways To Be Happy
Many people these days are concerned with achieving a happy life but often lack the skills and knowledge to do so. Luckily, thousands of years ago, the old Stoics already figured out how to suffer less and enjoy more with a system of exercises, wisdom, an…
Overview of early Judaism part 2 | World History | Khan Academy
[Instructor] In the last video, we started with the story of the Patriarchs in Genesis. How Abraham settles his people in Canaan, but eventually they get enslaved in Egypt. According to the Old Testament, that enslavement lasts for over 500 years until we…
Trigonometry review
I want to do a quick overview of trigonometry and the aspects of trig functions that are important to us as electrical engineers. So this isn’t meant to be a full class on trigonometry. If you haven’t had this subject before, this is something that you ca…
How to Surface a Submarine in the Arctic Ocean - Smarter Every Day 260
[Man] Seven zero, six up, point four up. Standby for impact! - Welcome back to Smarter Every Day. I’ve made a really long journey to an ice floe in the Arctic Ocean to board the USS Toledo, a U.S. Navy fast attack nuclear submarine, which has punched its …
Strategies for multiplying decimals
In this video, we’re going to further build our intuition for multiplying decimals. So let’s say that we wanted to figure out what eight times seven tenths is. Pause this video and see if you can figure this out on your own. Alright, now there’s several …
Misconceptions About Falling Objects
Now I want you to make a prediction: in my left hand I have a standard size basketball, and in my right hand a 5 kg medicine ball. If I drop them both at exactly the same time, which one will hit the ground first? Ah, this is a trick one, isn’t it? The h…