yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Slinky Drop Answer


3m read
·Nov 10, 2024

Well, this is going to be really tough to see. So how are we going to actually determine what the right answer is? Uh, if I were to drop it now, it would happen so fast you wouldn't really see clearly what's happening. So I've brought along my slow motion camera, and you'll see it at 300 frames per second. It's quite spectacular! Well, that's Ultra slowmo, so that's exactly what we need to sort out this problem. We'll give it a countdown, 'cause it happens really fast. All right, 3, 2, 1, drop!

Wow! Did you see that? I-I-I-I didn't really see which happened first. No, I need to slow that down. Well, let's go to a slow motion replay and see what actually happened.

So from the slow motion camera, we can clearly see that the bottom end stayed completely stationary. Even after you let go at the top, it waited until the whole Slinky had collapsed down to the bottom before it itself moved downwards. How do we explain that? Well, there are a number of explanations, but the simplest explanation is that the bottom end is sitting there minding its own business, with gravity pulling it down and tension pulling it up—equal and opposite forces. No motion at the bottom end until the bottom end gets the information that the T has changed, and it takes time for that information to propagate down through the Slinky to reach the bottom end. So it's propagating down as a compressional wave, and we saw that compression wave travel down. It has to reach the bottom before the bottom even knows that you've let go at the top. Correct? And that's when it knows to start falling. Correct?

That's a really remarkable finding! I mean, does this apply to any other objects, or is it just Slinkies? Uh, no. It applies to the real world, particularly in sports, which is the field I'm interested in. For example, when a player hits a ball, there's a huge force at the business end, but that force is not felt at the handle end until the ball is well on its way. So, a wave has to propagate from the business end down to the handle end, and then it propagates back again. What you actually feel down this end is considerably less than what the ball feels.

So, wow! If you're playing tennis or something, you only feel that you've hit the ball after you've actually hit the ball, and the ball's nearly to the net by the time you actually feel what's happened. That goes against, you know, all your intuitions that you really can feel it as soon as the ball's on your racket. Uh, it's the same in golf. If you whack a golf ball, you often find golfers will finish with a nice flourish thinking that it has some effect on the ball. But of course, the ball is halfway to the hole by the time that happens.

Of course, now what if we wanted to do a little extension activity? I want you to make a prediction. If we attach this tennis ball onto the base of the Slinky and we drop it again, what will happen to the tennis ball? Will it do the same as the base of the Slinky and just stay there, or will it fall with the acceleration due to gravity, G? Or will it go upwards? Well, I have to try it and find out. All right, I'd like you to make your prediction now! Quick!

More Articles

View All
Visit Her at Your Peril | Barkskins
[birds chirping] You are Mari, the housekeeper. He’s told me of you. [thud] Some creatures must go back to go wild, it seems. Monsieur Trepagny smashes them with his stick at night, and they know to stay away from our bed. He does have dominion over all. …
Cell specialization | Genes, cells, and organisms | High school biology | Khan Academy
Ah, the basic building blocks of all living things: cells. These incredible packages of organelles and subcellular components carry out a variety of functions in the body, like taking in nutrients, converting them into energy, and working with other cells…
Gyroscopic Precession
Hey everyone, it’s me, Derek from the channel Veritasium. I’ve been following this series by Destin on Smarter Every Day about helicopters, and gyroscopic precession is just one of those things that still blows my mind, as it did Destin. So, I’m here at t…
Standard deviation of residuals or Root-mean-square error (RMSD)
What we’re going to do in this video is calculate a typical measure of how well the actual data points agree with a model—in this case, a linear model. There are several names for it; we could consider this to be the standard deviation of the residuals, a…
How to catch a Dwarf Planet -- Triton MM#3
The 14 moons of Neptune are a strange bunch. Most of them are small, potato-shaped pieces of ice and rock. Some are so far away from Neptune that they need 29 years to circle Neptune once. Almost all of them are asteroids trapped by Neptune’s gravity. 99…
Addition of water (acid-catalyzed) mechanism | Organic chemistry | Khan Academy
Anytime you’re trying to come up with a mechanism for a reaction, it’s worthwhile to study a little bit of what you are starting with and then think about what you finish with and think about what is different. So, what we’re starting with, we could call…