yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Network theory - Marc Samet


2m read
·Nov 9, 2024

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

What does "going viral" on the internet really mean, and why does it happen so quickly? Why is a financial institution too big to fail? How does a virus in Africa end up in the United States in a matter of hours? Why are Facebook and Google such powerful companies at creating global connections? Well, in a word: networks.

But what are networks? Everyone knows about their social network, but there are all different kinds of networks you probably haven't thought about. Networks are collections of links which combine by specific rules and behaviors if they are alive. We say that networks are alive because they are in constant change. Over time, the connections within a network migrate and concentrate in new places, forming evolving structures.

How the evolution and concentration of constantly changing connections occurs is the subject of a whole discipline called network theory. We can think of networks as neighborhoods. Neighborhoods are defined by maps. A Google map demonstrates the relationship between locations in exactly the same fashion a network connects hubs and nodes, using streets as links to connect neighborhoods.

The reason a network can expand and evolve so quickly is based upon a mathematical concept called power functions. A power function is a mathematical amplification mechanism, which over specific and very small ranges, accelerates changes logarithmically. That is, a very small change in one parameter produces a huge change in another over a very specific range of values.

An example of how network structure emerges is the algorithm used by Google. As the number of links around a search term, say "friends", increases, connections begin to form among millions of different searches using the term "friend". What Google has cleverly accomplished is a real-time mathematical model for how to predict the emergence of growing connections among billions of search terms.

The algorithm Google derived collects the number of references to any search object. As references to a search object increase, the number of links also increases, creating a node. As the node increases in size, it eventually becomes a hub, which links to many nodes. Networks will continue to emerge as new ways of connecting and creating neighborhoods are defined.

Perhaps you can begin to see why networks are so powerful. As Google continues to collect the billions of daily searches, new clusters of links will rapidly emerge, forming additional and growing networks. Despite the logarithmic expansion of your network, the laws of six degrees of separation still apply. Therefore, if you explore a close friend or acquaintances in your Facebook network, everyone on average will be separated by six individuals or less, and a map of your social network will create neighborhoods linked by common connections among friends.

More Articles

View All
Homeroom with Sal & Arne Duncan - Wednesday, October 14
Hi everyone! Welcome to the homeroom live stream. Uh, we have a really exciting conversation today with Secretary Arne Duncan, uh, Secretary of Education under Barack Obama. Uh, but before we get into that, I will give my standard of announcements. Uh, f…
Peasant Revolts | World History | Khan Academy
In this video, I want to look at popular uprisings in late medieval Europe. So we’re talking about between roughly the 14th and the 16th centuries. These are sometimes known as peasants’ revolts, and we’ll talk a little later about whether or not that’s a…
How Does A Carburetor Work? | Transparent Carburetor at 28,546 fps Slow Mo - Smarter Every Day 259
This is a carburetor, and this is a special 3D printed see-through carburetor. And this is a high-speed camera with a macro lens on it. You see where this is going. If you’ve ever cranked some type of lawn care product with a small engine on it, you have …
Finding specific antiderivatives: rational function | AP Calculus AB | Khan Academy
So we’re told that ( F(2) ) is equal to 12. ( F’ ) prime of ( x ) is equal to ( \frac{24}{x^3} ), and what we want to figure out is what ( F(-1) ) is. Alright, so they give us the derivative in terms of ( x ), so maybe we can take the antiderivative of t…
Witness the Majestic Fin Whale | Epic Adventures with Bertie Gregory on Disney+
Oh, I’m Bertie. I want to tell wildlife stories in a rapidly changing world. You ready? We made it to Antarctica, and I’m here to film the mighty fin whale. Antarctica is a monumental challenge to filming at the best of times, but the whale gathering we’r…
6 MORE Tricks, Hacks, and Pranks -- "Up All Knight" Episode 3
Knock knock. Who’s there? Panther. Panther who? Panther, no pan! I’m going swimming. [Music] [Applause] Thank you, thank you. Welcome to Up All Night! I’m a knight. I’m a horse. Nay! We’ve got a great show for you today. Topic number one: games an…