yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Network theory - Marc Samet


2m read
·Nov 9, 2024

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

What does "going viral" on the internet really mean, and why does it happen so quickly? Why is a financial institution too big to fail? How does a virus in Africa end up in the United States in a matter of hours? Why are Facebook and Google such powerful companies at creating global connections? Well, in a word: networks.

But what are networks? Everyone knows about their social network, but there are all different kinds of networks you probably haven't thought about. Networks are collections of links which combine by specific rules and behaviors if they are alive. We say that networks are alive because they are in constant change. Over time, the connections within a network migrate and concentrate in new places, forming evolving structures.

How the evolution and concentration of constantly changing connections occurs is the subject of a whole discipline called network theory. We can think of networks as neighborhoods. Neighborhoods are defined by maps. A Google map demonstrates the relationship between locations in exactly the same fashion a network connects hubs and nodes, using streets as links to connect neighborhoods.

The reason a network can expand and evolve so quickly is based upon a mathematical concept called power functions. A power function is a mathematical amplification mechanism, which over specific and very small ranges, accelerates changes logarithmically. That is, a very small change in one parameter produces a huge change in another over a very specific range of values.

An example of how network structure emerges is the algorithm used by Google. As the number of links around a search term, say "friends", increases, connections begin to form among millions of different searches using the term "friend". What Google has cleverly accomplished is a real-time mathematical model for how to predict the emergence of growing connections among billions of search terms.

The algorithm Google derived collects the number of references to any search object. As references to a search object increase, the number of links also increases, creating a node. As the node increases in size, it eventually becomes a hub, which links to many nodes. Networks will continue to emerge as new ways of connecting and creating neighborhoods are defined.

Perhaps you can begin to see why networks are so powerful. As Google continues to collect the billions of daily searches, new clusters of links will rapidly emerge, forming additional and growing networks. Despite the logarithmic expansion of your network, the laws of six degrees of separation still apply. Therefore, if you explore a close friend or acquaintances in your Facebook network, everyone on average will be separated by six individuals or less, and a map of your social network will create neighborhoods linked by common connections among friends.

More Articles

View All
Khan Academy Needs Your Help This Back to School
Hi everyone, Sal Khan here from Khan Academy. I just want to remind everyone that, as we’re going through what’s clearly a very difficult time, especially, well, in the world generally, but especially in education, the entire team here at Khan Academy is…
The Most Dangerous Stuff in the Universe - Strange Stars Explained
Neutron stars are the densest things that are not black holes. In their cores, we might find the most dangerous substance in existence: Strange matter. A bizarre thing so extreme, that it bends the rules of the universe and could infect and destroy everyt…
Connecting f, f', and f'' graphically | AP Calculus AB | Khan Academy
We have the graphs of three functions here, and what we know is that one of them is the function f, another is the first derivative of f, and then the third is the second derivative of f. Our goal is to figure out which function is which— which one is f, …
Uncover Antarctica - BTS | National Geographic | OPPO
Antarctica is a land of extremes, and it’s got an incredible grand scale. So it’s very difficult to try and capture it with images. Being a National Geographic photographer creates an opportunity for me to document the world, and you don’t know what you’r…
Probability of sample proportions example | Sampling distributions | AP Statistics | Khan Academy
We’re told suppose that 15% of the 1750 students at a school have experienced extreme levels of stress during the past month. A high school newspaper doesn’t know this figure, but they are curious what it is. So they decide to ask us a simple random sampl…
Evaluating exponent expressions with variables
We are asked to evaluate the expression (5) to the (x) power minus (3) to the (x) power for (x) equals (2). So pause this video and see if you can figure out what hap—what does this expression equal when (x) equals (2). All right, now let’s work through …