yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Network theory - Marc Samet


2m read
·Nov 9, 2024

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

What does "going viral" on the internet really mean, and why does it happen so quickly? Why is a financial institution too big to fail? How does a virus in Africa end up in the United States in a matter of hours? Why are Facebook and Google such powerful companies at creating global connections? Well, in a word: networks.

But what are networks? Everyone knows about their social network, but there are all different kinds of networks you probably haven't thought about. Networks are collections of links which combine by specific rules and behaviors if they are alive. We say that networks are alive because they are in constant change. Over time, the connections within a network migrate and concentrate in new places, forming evolving structures.

How the evolution and concentration of constantly changing connections occurs is the subject of a whole discipline called network theory. We can think of networks as neighborhoods. Neighborhoods are defined by maps. A Google map demonstrates the relationship between locations in exactly the same fashion a network connects hubs and nodes, using streets as links to connect neighborhoods.

The reason a network can expand and evolve so quickly is based upon a mathematical concept called power functions. A power function is a mathematical amplification mechanism, which over specific and very small ranges, accelerates changes logarithmically. That is, a very small change in one parameter produces a huge change in another over a very specific range of values.

An example of how network structure emerges is the algorithm used by Google. As the number of links around a search term, say "friends", increases, connections begin to form among millions of different searches using the term "friend". What Google has cleverly accomplished is a real-time mathematical model for how to predict the emergence of growing connections among billions of search terms.

The algorithm Google derived collects the number of references to any search object. As references to a search object increase, the number of links also increases, creating a node. As the node increases in size, it eventually becomes a hub, which links to many nodes. Networks will continue to emerge as new ways of connecting and creating neighborhoods are defined.

Perhaps you can begin to see why networks are so powerful. As Google continues to collect the billions of daily searches, new clusters of links will rapidly emerge, forming additional and growing networks. Despite the logarithmic expansion of your network, the laws of six degrees of separation still apply. Therefore, if you explore a close friend or acquaintances in your Facebook network, everyone on average will be separated by six individuals or less, and a map of your social network will create neighborhoods linked by common connections among friends.

More Articles

View All
Buddha - Conquer Fear, Become Free
In The Dhammapada, the Buddha says that a wise person is beyond fear and, as a result, is truly free. And there’s a Zen story that shares a similar message. During a Japanese civil war, an army was taking control of different villages. And in one village,…
You Don’t Have To Be A Billionaire To Launch Satellites
Last year, the team at Astranis launched their first commercial satellite into space. Stage separation confirmed. [Music] [Applause] Their smaller, low-cost telecom satellites represent a major breakthrough for the aerospace industry, and they’re also the…
Death & Dynasties
Rulers are often related, with power passing from member to member, forming a dynasty. This occurs not just with royalty or dictators, but also with representatives in a democracy. Families frequently pass power or compete with other families for a turn a…
Homeroom with Sal and Wendy Kopp - Wednesday, September 15
Hi everyone! Sal Khan here from Khan Academy. Welcome to the Homeroom live stream! It’s been a while since we did one, but we’re back and we have an amazing guest, Wendy Kopp, CEO of Teach For All, also the founder of Teach For America. We’re going to ta…
Fourier series coefficients for cosine terms
So we’ve been spending some time now thinking about the idea of a Fourier series, taking a periodic function and representing it as the sum of weighted cosines and sines. Some of you might say, “Well, how is this constant weighted cosine or sine?” Well, y…
The Housing Market Bubble Just Popped
What’s up you guys, it’s Graham here! So we have to talk about what’s going on with the housing market because it was just found out that prices are continuing to go higher. Wait, what? Yep, you heard that correctly! Even though housing starts have dropp…