yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2c | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Part C: Find the time at which the speed of the particle is three.

So let's just remind ourselves what speed is. It's the magnitude of velocity. If you have the x, actually let me draw it this way. If you have the x dimension of, or the x component of a velocity right over there, so this is the rate of which x is changing with respect to time.

And you have the y component of the velocity. If you have the y component of the velocity, let's say it looks something like that—that is dy/dt—then the speed is going to be the magnitude of the sum of those two vectors. So this right over here, the magnitude of this vector right over here, is going to be the speed.

Well, what's the magnitude of that? Well, the Pythagorean theorem tells us it's going to be the square root of your x component of velocity squared, so (dx/dt) squared, plus your y component (dy/dt) squared. This right here is the speed, and we need to figure out what time this thing is equal to three.

So let's figure that out. The square root of—what's the x component of our velocity? Well, they told us over here the x component of our velocity is (cos(t))^2. So (cos(t))^2 we're going to square that whole thing, and then plus the y component of the velocity, the rate at which y is changing with respect to time, that's (e^(0.5t)) and we're going to square that.

So plus (e^(0.5t))^2. This right over here is our expression for speed as a function of time, and we still have to figure out when this thing equals 3.

So there are a couple of ways we could just subtract 3 from both sides and input this into our solver, or we could begin to simplify this a little bit. We could square both sides, and you would get (cos(t))^2 + (e^(0.5t))^2 = 9. So now we can subtract 9 from both sides.

And we get (cos(t))^2 + (e^(0.5t))^2 - 9 = 0. Now, once again in this part of the AP exam, we can use our calculators. So let's use our calculators to solve for—in this case, t—but I'll do everything in terms of x.

So the equation 0 = (cos(x))^2 + (e^x) - 9 = 0. We already have this set equal to zero, and so we click enter. Then we could just use our previous answer as our initial guess, and we click—we have to do this little blue solve there.

So I click alpha solve, let the calculator munch on it a little bit, and it gets t is equal to where x is equal to—but this is really t: 2.196. So we get t is approximately 2.196. Did I type that in right? 2.19? Yup. And round that up, and we are all done.

More Articles

View All
Matt Ridley: How Innovation Works, Part 1
I don’t have heroes; a hero’s a big word. There are people that I look up to, and I’ve learned a lot from, and Matt Ridley has got to be near the top of that list. Growing up, I was a voracious reader, especially reading science. Matt had a bigger influen…
Optimistic Nihilism
Human existence is scary and confusing. A few hundred thousand years ago, we became conscious and found ourselves in a strange place. It was filled with other beings. We could eat some; some could eat us. There was liquid stuff we could drink; things we c…
Why The $1 Electric Scooter Will TAKE OVER The World
And for all the young entrepreneurs out there, just realize that sometimes it’s the most simple ideas that often do the best. I think we have the natural tendency just to overcomplicate things because we believe the more complicated something is, the bett…
EAR Earrings -- LÜT #26
A bird house that looks like a surveillance camera and Mister Spock-topus. It’s episode 26 of LÜT. Now, here’s a perfume designed to make you smell like a book. And Generate offers a limited edition life wall clock. It’s just like a normal clock, except s…
7 Stoic Pillars: Shielding Yourself from Life's Impact, Epictetus Style
Hello everyone and welcome back to our journey of wisdom. Today, we delve into the profound teachings of the Stoic philosopher Epictetus, focusing on seven principles that can empower you to cultivate unyielding inner peace. If you’re new here, don’t forg…
Income elasticity of demand | APⓇ Microeconomics | Khan Academy
In previous videos, we have talked about the idea of price elasticity. It might have been price elasticity of demand or price elasticity of supply, but in both situations, we were talking about our percent change in quantity over our percent change in pri…