yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2c | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Part C: Find the time at which the speed of the particle is three.

So let's just remind ourselves what speed is. It's the magnitude of velocity. If you have the x, actually let me draw it this way. If you have the x dimension of, or the x component of a velocity right over there, so this is the rate of which x is changing with respect to time.

And you have the y component of the velocity. If you have the y component of the velocity, let's say it looks something like that—that is dy/dt—then the speed is going to be the magnitude of the sum of those two vectors. So this right over here, the magnitude of this vector right over here, is going to be the speed.

Well, what's the magnitude of that? Well, the Pythagorean theorem tells us it's going to be the square root of your x component of velocity squared, so (dx/dt) squared, plus your y component (dy/dt) squared. This right here is the speed, and we need to figure out what time this thing is equal to three.

So let's figure that out. The square root of—what's the x component of our velocity? Well, they told us over here the x component of our velocity is (cos(t))^2. So (cos(t))^2 we're going to square that whole thing, and then plus the y component of the velocity, the rate at which y is changing with respect to time, that's (e^(0.5t)) and we're going to square that.

So plus (e^(0.5t))^2. This right over here is our expression for speed as a function of time, and we still have to figure out when this thing equals 3.

So there are a couple of ways we could just subtract 3 from both sides and input this into our solver, or we could begin to simplify this a little bit. We could square both sides, and you would get (cos(t))^2 + (e^(0.5t))^2 = 9. So now we can subtract 9 from both sides.

And we get (cos(t))^2 + (e^(0.5t))^2 - 9 = 0. Now, once again in this part of the AP exam, we can use our calculators. So let's use our calculators to solve for—in this case, t—but I'll do everything in terms of x.

So the equation 0 = (cos(x))^2 + (e^x) - 9 = 0. We already have this set equal to zero, and so we click enter. Then we could just use our previous answer as our initial guess, and we click—we have to do this little blue solve there.

So I click alpha solve, let the calculator munch on it a little bit, and it gets t is equal to where x is equal to—but this is really t: 2.196. So we get t is approximately 2.196. Did I type that in right? 2.19? Yup. And round that up, and we are all done.

More Articles

View All
Expected value of a binomial variable | Random variables | AP Statistics | Khan Academy
So I’ve got a binomial variable ( x ) and I’m going to describe it in very general terms. It is the number of successes after ( n ) trials, where the probability of success for each trial is ( p ). This is a reasonable way to describe really any binomial …
Building a Startup is About Solving a Problem - Avni Patel Thompson of Poppy
Hi everyone! Good afternoon! How’s everyone doing? Oh, this is really great. I’m so excited to be here today. My name is Anne. I’m the co-founder and CEO of Poppy. We’re building the modern village by connecting vetted caregivers to families when they nee…
Decomposing shapes to find area (grids) | Math | 3rd grade | Khan Academy
Each small square in the diagram has a side length of one centimeter. So, what is the area of the figure? We have this figure down here in blue, and we want to know its area. Area is the total space it covers, and we’re also told that each of these little…
Hyphens vs. dashes | Punctuation | Khan Academy
Hello Garans, hello Paige, hi David. So today we’re going to learn about hyphens and what a hyphen is. It’s a little stick like this, as opposed to a dash which is about twice as long. People confuse them a lot, uh, but they have very different functions.…
Critically looking at data on ROC and economic growth over millenia | Macroeconomics | Khan Academy
So we’ve already talked about the general idea: the thesis that if the return on capital is greater than the growth of an economy, that could lead to inequality. Although we showed a case where, depending on the circumstances with the right numbers, that’…
Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy
[Instructor] So we have two vectors here, vector A and vector B. And what we’re gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And …