yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2c | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Part C: Find the time at which the speed of the particle is three.

So let's just remind ourselves what speed is. It's the magnitude of velocity. If you have the x, actually let me draw it this way. If you have the x dimension of, or the x component of a velocity right over there, so this is the rate of which x is changing with respect to time.

And you have the y component of the velocity. If you have the y component of the velocity, let's say it looks something like that—that is dy/dt—then the speed is going to be the magnitude of the sum of those two vectors. So this right over here, the magnitude of this vector right over here, is going to be the speed.

Well, what's the magnitude of that? Well, the Pythagorean theorem tells us it's going to be the square root of your x component of velocity squared, so (dx/dt) squared, plus your y component (dy/dt) squared. This right here is the speed, and we need to figure out what time this thing is equal to three.

So let's figure that out. The square root of—what's the x component of our velocity? Well, they told us over here the x component of our velocity is (cos(t))^2. So (cos(t))^2 we're going to square that whole thing, and then plus the y component of the velocity, the rate at which y is changing with respect to time, that's (e^(0.5t)) and we're going to square that.

So plus (e^(0.5t))^2. This right over here is our expression for speed as a function of time, and we still have to figure out when this thing equals 3.

So there are a couple of ways we could just subtract 3 from both sides and input this into our solver, or we could begin to simplify this a little bit. We could square both sides, and you would get (cos(t))^2 + (e^(0.5t))^2 = 9. So now we can subtract 9 from both sides.

And we get (cos(t))^2 + (e^(0.5t))^2 - 9 = 0. Now, once again in this part of the AP exam, we can use our calculators. So let's use our calculators to solve for—in this case, t—but I'll do everything in terms of x.

So the equation 0 = (cos(x))^2 + (e^x) - 9 = 0. We already have this set equal to zero, and so we click enter. Then we could just use our previous answer as our initial guess, and we click—we have to do this little blue solve there.

So I click alpha solve, let the calculator munch on it a little bit, and it gets t is equal to where x is equal to—but this is really t: 2.196. So we get t is approximately 2.196. Did I type that in right? 2.19? Yup. And round that up, and we are all done.

More Articles

View All
Java Lesson 8
Hey guys, this is Mac. Heads in the one with our last Java lesson. So, as you may know, after this Java lesson, we’re going to move into Mac programming. But anyway, I’m going to do our last Java lesson once and for all. In this Java lesson, I’m going to…
Bob Kulhan: Improv 101 (The "Yes, and..." Principle)
The challenge that many leaders face is that we’re analytical. We think too quickly about why something can’t happen or how to correct a problem, as opposed to twisting it and framing the brain that this is an unexpected opportunity; what can I do with it…
Our Random Pass Widget
Hey guys, this is Maads 101. Um, today we’re going to be demonstrating a new password generating widget. Um, it will randomly generate a hex number or um, alphanumeric password, um, which is between five and 31 digits. So first of all, um, you want to cl…
Stealth Wealth (Explained)
They say to live happy, live hidden. Something you’re not yet aware of is happening in the markets, and the implication it has will most likely impact you. Rich people are changing their behaviors to accommodate the current moment in time, and the average…
Khanmigo for teachers
Hi! I’m Michelle, a professional learning specialist here at KH Academy and a former classroom teacher, just like you. Meet Kigo, your AI-driven companion, who’s revolutionizing teaching for a more engaging and efficient experience. Kigo has many excitin…
New Orleans Mayor Mitch Landrieu On Why Confederate Monuments Were Taken Down | National Geographic
I went and said to me one morning, “I want you to think about something.” I said, “What about these statues, man? We need to do something special. That statue of Li, there’s no reason for them never to have a statue in the waters even win anything.” I th…