yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2c | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Part C: Find the time at which the speed of the particle is three.

So let's just remind ourselves what speed is. It's the magnitude of velocity. If you have the x, actually let me draw it this way. If you have the x dimension of, or the x component of a velocity right over there, so this is the rate of which x is changing with respect to time.

And you have the y component of the velocity. If you have the y component of the velocity, let's say it looks something like that—that is dy/dt—then the speed is going to be the magnitude of the sum of those two vectors. So this right over here, the magnitude of this vector right over here, is going to be the speed.

Well, what's the magnitude of that? Well, the Pythagorean theorem tells us it's going to be the square root of your x component of velocity squared, so (dx/dt) squared, plus your y component (dy/dt) squared. This right here is the speed, and we need to figure out what time this thing is equal to three.

So let's figure that out. The square root of—what's the x component of our velocity? Well, they told us over here the x component of our velocity is (cos(t))^2. So (cos(t))^2 we're going to square that whole thing, and then plus the y component of the velocity, the rate at which y is changing with respect to time, that's (e^(0.5t)) and we're going to square that.

So plus (e^(0.5t))^2. This right over here is our expression for speed as a function of time, and we still have to figure out when this thing equals 3.

So there are a couple of ways we could just subtract 3 from both sides and input this into our solver, or we could begin to simplify this a little bit. We could square both sides, and you would get (cos(t))^2 + (e^(0.5t))^2 = 9. So now we can subtract 9 from both sides.

And we get (cos(t))^2 + (e^(0.5t))^2 - 9 = 0. Now, once again in this part of the AP exam, we can use our calculators. So let's use our calculators to solve for—in this case, t—but I'll do everything in terms of x.

So the equation 0 = (cos(x))^2 + (e^x) - 9 = 0. We already have this set equal to zero, and so we click enter. Then we could just use our previous answer as our initial guess, and we click—we have to do this little blue solve there.

So I click alpha solve, let the calculator munch on it a little bit, and it gets t is equal to where x is equal to—but this is really t: 2.196. So we get t is approximately 2.196. Did I type that in right? 2.19? Yup. And round that up, and we are all done.

More Articles

View All
Sun Tzu | How to Fight Smart (The Art of War)
This video doesn’t condone violence or war of any kind, but simply explores the tactics from an ancient text, and how these might work in everyday (non-military) settings in the modern world. Nevertheless, some information and graphics in this video could…
Surviving a Hostage Situation | No Man Left Behind
It’s hard to describe what was going on. There is total, not panic, but chaos. Pandemonium. I don’t know that anybody was ready for Anita to shoot me. I wasn’t. After the shot, it was a throbbing, burning pain, and I immediately became concerned about the…
See Why These Cute Little Goats Are the Latest Yoga Craze | Short Film Showcase
So I have six goats: Anel and Adams, because I’m a photographer, so that seemed fitting for my first two goats. They are all mini goats, but Dodger—that’s who I got next—and he’s a B goat. He was going to go in someone’s freezer; he’s a huge pain. Then I …
This is Ruining Our Lives
The year is 1665, and Isaac Newton is looking out his window at an apple tree standing tall in his orchard in Lincolnshire, England. All of a sudden, a ripe and lonely apple falls from the tree and makes its way to the ground. While most people would cons…
How a Tiny Dog Saved a National Geographic Expedition | Expedition Raw
Meet Scuba. This little gal might not look like a blood hound, but she helped out National Geographic in a huge way. My name is Alan Turchik, and I build cameras for National Geographic. My job takes me all over the world, deploying these camera systems. …
6 things you probably need to hear
Here are six things you probably need to hear. Number one: Nobody is on their way. This is something that everybody has to realize at some point in their life, and some people realize it when it’s far too late. And that is that nobody is on their way to …