yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 2c | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

Part C: Find the time at which the speed of the particle is three.

So let's just remind ourselves what speed is. It's the magnitude of velocity. If you have the x, actually let me draw it this way. If you have the x dimension of, or the x component of a velocity right over there, so this is the rate of which x is changing with respect to time.

And you have the y component of the velocity. If you have the y component of the velocity, let's say it looks something like that—that is dy/dt—then the speed is going to be the magnitude of the sum of those two vectors. So this right over here, the magnitude of this vector right over here, is going to be the speed.

Well, what's the magnitude of that? Well, the Pythagorean theorem tells us it's going to be the square root of your x component of velocity squared, so (dx/dt) squared, plus your y component (dy/dt) squared. This right here is the speed, and we need to figure out what time this thing is equal to three.

So let's figure that out. The square root of—what's the x component of our velocity? Well, they told us over here the x component of our velocity is (cos(t))^2. So (cos(t))^2 we're going to square that whole thing, and then plus the y component of the velocity, the rate at which y is changing with respect to time, that's (e^(0.5t)) and we're going to square that.

So plus (e^(0.5t))^2. This right over here is our expression for speed as a function of time, and we still have to figure out when this thing equals 3.

So there are a couple of ways we could just subtract 3 from both sides and input this into our solver, or we could begin to simplify this a little bit. We could square both sides, and you would get (cos(t))^2 + (e^(0.5t))^2 = 9. So now we can subtract 9 from both sides.

And we get (cos(t))^2 + (e^(0.5t))^2 - 9 = 0. Now, once again in this part of the AP exam, we can use our calculators. So let's use our calculators to solve for—in this case, t—but I'll do everything in terms of x.

So the equation 0 = (cos(x))^2 + (e^x) - 9 = 0. We already have this set equal to zero, and so we click enter. Then we could just use our previous answer as our initial guess, and we click—we have to do this little blue solve there.

So I click alpha solve, let the calculator munch on it a little bit, and it gets t is equal to where x is equal to—but this is really t: 2.196. So we get t is approximately 2.196. Did I type that in right? 2.19? Yup. And round that up, and we are all done.

More Articles

View All
The First Amendment | The National Constitution Center | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy, and today I’m learning more about the First Amendment to the US Constitution. The First Amendment is one of the most important amendments to the Constitution, if not the most important. It reads, “Congress shall make no …
How To Make Millions In A Recession
What’s up guys, it’s Graham here. So, the other day I posted on Instagram about why I was not planning to make this video. In that post, I explained that I had made videos like this in the past; my thoughts and outlook on the markets have not changed, and…
Rhinoplasty Confusion (Clip) | To Catch a Smuggler | National Geographic
What were you doing in Mexico? Oh, okay. A couple of people have been doing that. Here’s an essential part of entry with the summer upon us. We have high traffic, a lot of crossers. So we’re seeing an increase of narcotics smuggling, people smuggling. CO…
Patterns in hundreds chart
So what we have in this chart is all the numbers from 1 to 100 organized in a fairly neat way. It’s a somewhat intuitive way to organize it where each row you have 10. So you go from 1 to 10, then 11 to 20, then 21 to 30, all the way to 100. And what we’…
The Past We Can Never Return To – The Anthropocene Reviewed
Today we’re doing something different. Our friend John Green will read a story from his podcast, “The Anthropocene Reviewed.” We hope you enjoy it, and we’ll be back with a regular video soon. So if you’ve ever been or had a child, you will likely alread…
Banking institutions | Banking | Financial Literacy | Khan Academy
Whenever you’re dealing with any type of a business, it’s good to think about how that business actually makes money. Because then that helps you think about what are you paying for and what are you getting in return. This applies very much to the notion …