yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
TIL: We Could Give Mars Our "Cooties" | Today I Learned
Human beings are really dangerous to the surface of Mars. Let’s say life did exist on the surface of Mars; would it be able to withstand the bacteria, the viruses, all of the bad things that we have on Earth, without having the protection? Because it’s ne…
What Sharks Are Tag-Teaming Attacks? | SharkFest
NARRATOR: Historically, shark attacks on Reunion have been rare. Over the previous decade, the annual average was just one incident. But in 2011, the island is in crisis. Mathieu is actually Reunion’s fifth victim this year. And it’s only September. Islan…
SPOT THE FAKE !! -------- DONG
Hey, Vsauce. Michael here, coming from Kansas for the 4th of July. Why Kansas? Well, because out here you can do anything. You can even put a firework store next to a gas station. But enough about the real world, let’s talk about DONGs, things you can d…
5 Secrets You Shouldn't Share with Others | STOICISM INSIGHTS #stoicism
Welcome back to Stoicism Insights, your guide to unlocking the timeless wisdom of Stoic philosophy for a more fulfilling life. In this video, I’ll be addressing certain personal matters and situations that are best kept private, things that don’t serve an…
$0 DOWN MORTGAGES ARE BACK (Get Paid To Buy A Home)
What’s up you guys? It’s Graham here, and the housing market is about to explode. That’s right! In the middle of record-high prices, record-high mortgage rates, and record-low inventory, a brand new proposal was just announced that would give first-time h…
BIGGEST Game Collection Ever... and More! -- Mind Blow 5
Yeah, let me get a beer. And how are you feeling that from the bottom? Are you some kind of evil wizard? I’m not drinking your evil wizard. But I forget it, just give me two. Speaking of wizards, let’s see what a little hydrogen peroxide and dry yeast ca…