yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
Developing themes | Reading | Khan Academy
Hello readers! Let’s talk about themes and how authors can intentionally build messages into fiction. Now, to recap a little, themes link big ideas about the world we live in with the action of a text. For example, in The Lord of the Rings stories and fil…
Sources of genetic variation | Inheritance and variation | High school biology | Khan Academy
In this video, we’re going to talk about sources of genetic variation, which is key for evolution and natural selection to happen. Just as a little bit of a primer: natural selection, you can have a bunch of different organisms with different genetics, di…
The Border Between Crocs and Humans | Explorer
The saltwater crocodile is among the fiercest hunters on the planet. This awe-inspiring prehistoric predator has the strongest animal bite ever recorded and can measure 20 feet long. No doubt it takes a certain breed of human to live in the salty’s habita…
The Lure of Horror
Why do we love being scared? Is it the way our hearts pound in our chests? The mixture of curiosity and revulsion when we see a monster or a ghost? Or is it something even darker, like the disturbing themes portrayed in popular culture? I’ll be drawn to g…
NERD WARS: Boba Fett vs. Deadpool
This is Jeff Wman. I don’t know where Adam is, but we’re bringing you another Nerd Wars. This one’s coming from hello, Master Chief. It’s Boba Fett versus Deadpool. I will do the opening gambit right here. There’s no way that Boba Fett could stop Deadpoo…
Monthly payment versus total cost | Car buying | Financial Literacy | Khan Academy
In this video, we’re going to explore the tradeoff between trying to lower our monthly payment while also trying to lower the total amount of money we pay out to get a loan for a car. In this scenario, although this trade-off is true for many types of loa…