yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
You Can't Touch Anything
Hey, Vsauce. Michael here. And today we’re going to get close, like really close. In fact, I want to answer the question: what’s the closest we can get to other objects and other people? Now, it might sound like kind of a simple, easy question, but when …
Science Is an Error-Correcting Mechanism
So getting back to good explanations, where do these explanations come from? There’s currently an obsession with induction. Induction being the idea that you can predict the future from the past. You can say, “I saw one, then two, then three, then four, …
The Drill we sent to Mars - Smarter Every Day 143
Hey, it’s me Destin, welcome back to Smarter Every Day. This is my drill press. Out of all things that humans could send up to Mars on a nuclear-powered robot, a drill was one of the most important things we sent. And the reason we did this, well think ab…
Working with matrices as transformations of the plane | Matrices | Precalculus | Khan Academy
In a previous video, I talked about how a two by two matrix can be used to define a transformation for the entire coordinate plane. What we’re going to do in this video is experiment with that a little bit and see if we can think about how to engineer two…
How To Measure The Tiniest Forces In The Universe
This is 10 micrograms. You think that I might be able to see? I think you might be able to. Oh boy. It’s an arrow right there. Yeah, yeah, yeah. This flashlight will help. I feel like I need to get video of this. [Dr. Shaw] I don’t know how. (Dr. Shaw la…
Homeroom with Sal & Jonathan Haidt - Wednesday, July 1
Hi everyone! Welcome to our daily homeroom livestream. For those of you who are wondering what this is, this is something we started a few months ago. It’s really just a way to stay connected, have interesting conversations about education and other topic…