yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
Safari Live - Day 194 | National Geographic
Good afternoon everybody, and welcome to the sunset Safari here on Sunday afternoon. I think it’s a Sunday afternoon, anybody? You’re looking at a leopard, believe it or not! That is Husana, the male leopard. My name is James Henry, this is my Sunday smil…
Why Your Brain Blinds You For 2 Hours Every Day
Narrator: The world you see is not real – you’re not living in this very moment that you are experiencing and nothing is like it seems. It turns out your brain constructs your reality as you are experiencing it, it edits your memories as they happen, it l…
Social contract - schmotial contract
People who support the state often say that everyone who lives in the territory claimed by the state has implicitly agreed to abide by the state’s rules; that by not leaving the territory, they’ve entered into a voluntary agreement. This agreement is ofte…
How Would Warren Buffett Invest a Small Sum of Money?
I’m Michael Zenger from Danvers, Massachusetts. That’s the town who’s missed, who’s banned Mr. Buffett so generously sent to the Rose Bowl Parade last year. So, you’re a very popular guy in my town. Good morning, Mr. Buffett. Mr. Munger. Mr. Buffett, I w…
Answering google's most searched questions of 2019..
So the Internet is a big place. There’s a lot of people on it, a lot of curious people. Things they want to do, stuff they want to learn, and that’s great and all. You know, it’s always good to learn things; you should never stop learning. Search engines …
THE NEW $1200 STIMULUS CHECK | ALL DETAILS REVEALED
What’s up guys, it’s Graham here. So wow, it’s been a while since we talked about what’s going on with the stimulus check and stimulus package. Even though this is something I have not covered since May 29th, which is basically like a decade in YouTube ti…