yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
The Stock Market is One Giant Bubble. (Howard Marks Explains)
People are now convinced AI will change the world; I imagine it will. Every bubble uses widespread conviction. Everybody believes they bid the beneficiaries of a up to the Moon. It turns out it’s overdone. There’s Howard Marks, the founder of Oak Tree Cap…
Inflation Just Hit a 13-Year High and Investors Are Worried
So in the past week, the Federal Reserve has had their little meeting and decided to keep interest rates exactly where they are until their next meeting. So for those that don’t know, the Fed meets eight times per year to discuss monetary policy. With in…
9 CRUCIAL MOMENTS TO ADOPT SILENCE LOCK YOUR MOUTH | STOICISM INSIGHTS
Imagine a world where your silence can speak louder than words, where your calm can overpower the chaos around you. Today we’re diving deep into the art of silence, a concept so powerful yet so underrated in our noisy, hectic world. I want you to think ab…
We Don’t Want Pleasure; We Just Want the Pain to End
Pleasure. We’re all after it in some way or another. Some limit themselves or are limited to simple pleasures. Others live lavishly, spending fortunes indulging in expensive delights just to experience a bit of satisfaction – and our consumerist culture e…
Millionaire Exposes The Jake Paul Financial Freedom Scam
What’s up you guys? It’s Graham here. So let me start by asking you three very important questions. Number one, have you ever dreamed of being a millionaire? Number two, have you ever wanted to be financially free? And most importantly, number three, have…
The 5 BEST Credit Cards For Cash Back
What’s of you guys? It’s Graham here. So, after the recent popularity of the Apple credit card video, it came to my attention that a lot of people were focusing on the 2% cashback on the products purchased through Apple Pay and then also focusing on the …