yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
The Future of Driving | Years of Living Dangerously
TY BURRELL: Now that I’ve learned self-driving cars aren’t that far off, what about ride sharing? Are companies like Lyft and Uber going to be part of the solution? How you doing? All right? What are the odds? You are John Zimmer, President of Lyft. You g…
Short run and long run equilibrium and the business cycle | AP Macroeconomics | Khan Academy
What we’re going to do in this video is talk about the notion of equilibrium in a macroeconomics context. So let’s review a little bit of what we’ve already studied about aggregate demand and aggregate supply. So this vertical axis here, that is the pri…
Meet the Intimidating Eel That Mates For Life | National Geographic
Okay, so this is a wool feel. As anything named after a wolf would suggest, they are intimidating master predators. You may see the way this guy chomps down on a sea urchin like it just doesn’t even feel its spines on its throat. His teeth are pretty worn…
Secrets You Can Learn From Your Customers
And some point during this coffee session, the guy was like, “Hey, oh, you want my nose? You want to see my, would you like a gold mine? Yeah, for all of my thoughts, all of my everything.” [Music] Hello, this is Michael Seibel with Dotson Caldwell, and…
A Rare Look Into the Lives of North Koreans | Nat Geo Live
It’s fair to say that North Korea is one of the most isolated, least understood places on Earth. Part of the reason that it is so misunderstood, and nothing is known about it, is there have been very few photographs that have ever been taken there. (appla…
Magic Without Lies | Cosmos: Possible Worlds
In the quantum universe, there’s an undiscovered frontier where the laws of our world give way to the ones that apply on the tiniest scale we know. They’re divorced from our everyday experience. How can you think about a world that has different rules tha…