yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
IMPORTANT Tax Tips That Will Save You Thousands!
[Music] Hey guys, welcome back to the channel! In this video, we are going to be talking about 10 tax tips to help you guys get your tax returns sorted out. Because I’m doing this video specifically now, but as a bit of a reminder that if you’re an Austr…
The Rarity or Probability of a Miracle | The Story of God
How do you define a miracle? How rare does an event have to be before we would call it miraculous? One in a million? One in a billion? If a miraculous thing is something that happens one in a billion times, it happens all the time. Because with six billi…
How Understanding the Typical Life Arc can Give you Perspective
Most people’s lives are, there’s a life arc, and most people’s lives transpire in like ways that you could see over and over again. You know, so I break it down. It seems to me like there are three big phases in life. The first phase is you’re dependent …
Electron configurations with the periodic table | Chemistry | Khan Academy
Let’s explore electronic configurations. It’s basically arranging electrons of different elements in various shells and subshells. Let me quickly show you some examples. Yes, this will look overwhelming, but for now, focus on these numbers: 1, 2, 3, 4, 5,…
15 Things You Didn't Know About NIKE
Fifteen things you didn’t know about Nike. Welcome to a Lux Calm, the place where future billionaires come to get inspired. Hello, Aluxers, and welcome to another exciting original video presented by Alux.com. Nike is one of the world’s top producers of …
Sam Altman's Method for Clear Thinking
Speaker: No, I’m a huge notetaker. Oh, tell me about that—there’s all these like fancy notebooks in the world, yeah, you don’t want those, um, you definitely want a spiral notebook because one thing that’s important is you can rip Pages out frequently, an…