yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
Socially efficient and inefficient outcomes
Let’s study the market for soda a little bit. So, we’re going to draw our traditional axes. So that is price, and that is quantity. We have seen our classic supply and demand curves. So, this could be our upward sloping supply curve. At a low price, not a…
The Upcoming Stock Market Collapse | Round 2
What’s up, you guys? It’s Graham here. So, you know the saying, “What goes up must come down”? Well, it’s been coming down a lot lately. And it just goes to show you that a lot can happen in a week because just a few weeks ago, the S&P 500 logged one …
Surprising My Dad With My NEW Dream Home!
Oh my gosh! This is huge! Now I know what 20-foot ceilings mean! I don’t think I’ve ever been in a room this big before. I mean, like a house. This is giving me a whole other experience of days. I think I’m moving here! That’s the house! What’s up, you g…
Khan Academy Live: AP Calculus
Hi and welcome to live tutoring for the AP Calculus exams provided by Con Academy! In case you are curious, I am not Sal Con; my name is Dave. I first took the AP Calculus test back in 2006, and before joining KH Academy, I was an AP Calculus teacher. So…
100 Seconds to Midnight
Mutually assured destruction, MAD. These three terrifying words have somehow been the source of relative peace in the world for close to six decades. Yes, the only way we humans were able to achieve some sort of world peace is by keeping the most deadly w…
Kevin O'Leary Rates Brooklyn Dumpling Shop's Finest | Chef Wonderful
[Music] That’s what I’m talking about. Hey, Chef Wonderful here, and I want to talk about dumplings. Yes, I love dumplings, and I think they are just the most amazing food. They bring so many cultures together. It’s such a healthy snack, or you can be dec…