yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
Proving the ASA and AAS triangle congruence criteria using transformations | Geometry | Khan Academy
What we’re going to do in this video is show that if we have two different triangles that have one pair of sides that have the same length, so these blue sides in each of these triangles have the same length. They have two pairs of angles where, for each …
Navy SEAL Astronauts - Smarter Every Day 243
Hey, it’s me, Destin. Welcome back to Smarter Every Day! Today on Smarter Every Day, we are going to learn about the top, like, top, top, top people that exist. Um, you’ve heard of astronauts and how big of a deal it is to become an astronaut. You’ve hear…
Skip counting equal groups
What we have here are pictures of running pigs, and we could try to figure out how many running pigs there are by just counting the pigs. But we’re going to start building some new muscles, and this muscle is going to involve, hey, if we group the pigs in…
how to learn a language on your own | study tips 📚🌎
Hi guys, what’s up? It’s me, Dudy. Today, we’re gonna talk about how to learn any language on your own, and I’m gonna give you some study tips and also the methods that I’m gonna use for learning Italian because I moved to Italy and I don’t know Italian …
Parents, learn how to boost writing skills with Khanmigo
Hey parents, we know that trying to help your kids with their essays can often feel like navigating through an unknown city without a map. But don’t worry, we’re here to provide the compass that you need. We’re proud to present our latest Kigo feature: ac…
No Need To Worry About A Recession!
[Music] You’ve got inflation fears out there. That is one of just many worries weighing on the averages. But in times of high volatility, you got to start looking around. Where can investors go for opportunity? Let’s bring in Kevin O’Leary. Kevin, you ar…