yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving exponential equations using exponent properties | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice solving some exponential equations, and we have one right over here. We have (26^{9x + 5} = 1).

So pause the video and see if you can tell me what (x) is going to be. Well, the key here is to realize that (26^0) is equal to 1. Anything to the 0th power is going to be equal to one. Zero to the zero power we can discuss some other time, but anything other than zero to the zero power is going to be one.

So we just have to say, well, (9x + 5) needs to be equal to zero. (9x + 5) needs to be equal to zero, and this is pretty straightforward to solve. Subtract five from both sides, and we get (9x = -5). Divide both sides by nine, and we are left with (x = -\frac{5}{9}).

Let's do another one of these, and let's make it a little bit more interesting. Let's say we have the exponential equation (2^{3x + 5} = 64^{x - 7}).

Once again, pause the video and see if you can tell me what (x) is going to be or what (x) needs to be to satisfy this exponential equation.

All right, so you might at first say, "Oh, maybe (3x + 5) needs to be equal to (x - 7)," but that wouldn't work because these are two different bases. You have (2^{3x + 5}) then you have (64^{x - 7}).

So the key here is to express both of these with the same base, and lucky for us, (64) is a power of two. (2^3) is eight, so it's going to be (2^3 \times 2^3); eight times eight is sixty-four, so it's (2^6) is equal to sixty-four.

You can verify that. Take six twos and multiply them together, you’re going to get (64). This is just a little bit easier for me; eight times eight, and this is the same thing as (2^6) power is (64).

And I knew it was to the sixth power because I just added the exponents because I had the same base.

All right, so I can rewrite (64). Let me rewrite the whole thing. So this is (2^{x + 5} = 2^6), and then that to the (x - 7) power.

And to simplify this a little bit, we just have to remind ourselves that if I raise something to one power and then I raise that to another power, this is the same thing as raising my base to the product of these powers (a^{b \cdot c}).

So this equation I can rewrite as (2^{3x + 5} = 2^{6 \cdot (x - 7)}). So it's going to be (6x - (6 \cdot 7) = 42).

I'll just write the whole thing in yellow: (6x - 42). I just multiplied the (6) times the entire expression (x - 7).

And so now it's interesting. I have (2^{3x + 5}) power has to be equal to (2^{6x - 42}) power, so these need to be the same exponent. So (3x + 5) needs to be equal to (6x - 42).

So there we go; it sets up a nice little linear equation for us. (3x + 5 = 6x - 42).

Let's see, we could get all of our — since, well, I'll put all my (x)'s on the right-hand side since I have more (x)'s on the right already. So let me subtract (3x) from both sides, and let me — I want to get rid of this (42) here, so let's add (42) to both sides.

And we are going to be left with (5 + 42 = 47) is equal to (3x). Now we just divide both sides by (3), and we are left with (x = \frac{47}{3}).

(x = \frac{47}{3}), and we are done.

More Articles

View All
Adora Cheung - How to Prioritize Your Time
Hello, as Kevin said, my name is Adora. I’m one of the partners at YC, and I’m going to talk about how to prioritize time. Time, as you know, is precious, especially when you’re working on a startup. Time burns money, and money is the very basic thing tha…
Derivative as slope of curve | Derivatives introduction | AP Calculus AB | Khan Academy
What I want to do in this video is a few examples that test our intuition of the derivative as a rate of change or the steepness of a curve, or the slope of a curve, or the slope of a tangent line of a curve, depending on how you actually want to think ab…
She Sails the Seas Without Maps or Compasses | Podcast | Overheard at National Geographic
Foreign, I like to think of the voyage and canoes as taking us back in time on the ocean. The Hua Kamalu is a navigator with the Polynesian Voyaging Society. I’ll often ask my crew, like, what do you think it would have been like to show up in Hawaii as t…
The Obsession of the Modern World | Origins: The Journey of Humankind
In a society filled with human innovation, one invention stands out above them all: the one that has become the obsession of the modern world—money. Money was not just an intervention; it was a mental revolution and created a system of trust. An elaborate…
If I Had To Start Over, This is What I Would Do #shorts
Well, what a great place to get a question like that, right in the heart of Beverly Hills. You can’t come here without any money; you’ve got to make money first. And the way you do that, if you had nothing, I would use the advantage of the internet that …
Earth's First Selfie | Generation X
With you watching on a dark December night, the final Apollo mission blasts off. As the astronauts leave Earth behind, they do something remarkable: they take a family photo. As the astronauts were leaving Earth, within just a few hours, they were able to…