yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Subtracting rational expressions: unlike denominators | High School Math | Khan Academy


3m read
·Nov 11, 2024

So right over here we have one rational expression being subtracted from another rational expression. I encourage you to pause the video and see what this would result in, so actually do the subtraction.

Alright, now let's do this together. If we're subtracting two rational expressions, we'd like to have them have the same denominator, and they clearly don't have the same denominator. So we need to find a common denominator, and a common denominator is one that is going to be divisible by either of these. Then we can multiply them by an appropriate expression or a number so that it becomes the common denominator.

The easiest common denominator I can think of, especially because these factors, these two expressions have no factors in common, would just be their product. So this is going to be equal to... So we could just multiply these two. This is going to be... actually, let me do this one right over here in magenta. So this is going to be equal to the common denominator. If I say, if I want to just multiply those two denominators for this one, I'll have my 8x + 7, and now I'm going to multiply it by 3x + 1.

I'm multiplying it by the other denominator, and I had negative 5x in the numerator. But if I'm going to multiply the denominator by 3x + 1, and I don't want to change the value of the expression, we'll have to multiply the numerator by 3x + 1 as well. Notice 3x + 1 divided by 3x + 1 is just 1, and you'd be left with what we started with.

From that, we are going to subtract all of this. Now, there's a couple of ways you could think of the subtraction. I could just write a minus sign right over here and do the same thing that I just did for the first term. Or another way to think about it, and actually for this particular case, I like thinking about it better this way, is to just add the negative of this.

So if I just multiplied negative 1 times this expression, I'd get negative 6x^3 over 3x + 1. If I had more terms up here in the numerator, I would have to be careful to distribute that negative sign. But here, I only have one term, so I just made it negative. I could say this is going to be plus... and let me do this in a new color, this in green. Our common denominator, we already established, is just the product of our two denominators.

So it is going to be 8x + 7 times 3x + 1. Now, if we multiply the denominator here, it was 3x + 1. We're multiplying it by 8x + 7, so that means we have to multiply the numerator by 8x + 7 as well. 8x + 7 times negative 6x^3. Notice 8x + 7 divided by 8x + 7 is 1. If you were to do that, you would get back to your original expression right over here, the negative 6x^3 over 3x + 1.

And now we're ready to add. This is all going to be equal to... I'll write the denominator in white so we have our common denominator, 8x + 7 times 3x + 1. Now, in the magenta, I would want to distribute the negative 5x. So negative 5x times positive 3x is negative 15x^2, and then negative 5x times 1 is minus 5x.

Then in the green, I would have... let's see, I'll distribute the negative 6x^3. So negative 6x^3 times positive 8x is going to be negative 48x^4, and then negative 6x^3 times positive 7 is going to be negative 42x^3.

I think I'm done because there's no more... I only have one fourth degree term, one third degree term, one second degree term, one first degree term, and that's it. There's no more simplification here. Some of you might want to just write it in descending degree order. So you could write it as negative 48x^4 minus 42x^3 minus 15x^2 minus 5x, all of that over 8x + 7 times 3x + 1.

But either way, we are all done, and it looks like up here... yeah, there's nothing to factor out. These two are divisible by 5, these are divisible by 6. But even if I were to factor that out, nothing over here down here, no five or six to factor out. Yeah, so it looks like we are all done.

More Articles

View All
Gordon Ramsay Goes Cast Net Fishing in Laos | Gordon Ramsay: Uncharted
First of all, an absolute pleasure because you’ve helped put Lao cuisine on the map. I’m dying to get to understand Lao cuisine. Food not too sweet, but we use lots of stuff that we get from the forest or swimming river. We also use more herbs. Wow, that…
The Most Powerful Way to Think | First Principles
In the previous video, we discussed the idea of power and created a framework for thinking about it. I claimed that someone needed two fundamental ingredients to be powerful: a true understanding of the world and the resources to shape it. As promised, we…
Svalbard - The Northernmost Town on Earth
Come take a walk with me, around Longyearbyen. That’s the largest town on the Norwegian islands of Svalbard. Parts of it may look familiar. But make no mistake, this place IS different. At 78° north, it is just 1800mi/1300km from the North Pole. And with …
Anne Finucane talks about supporting communities through the Covid-19 crisis. | Homeroom with Sal
Hi everyone, Sal Khan here from Khan Academy. Welcome to our daily homeroom live stream! For those of y’all who this is maybe the first time that you’re seeing this, you’re like, “What is this link on YouTube or Facebook?” This is our way of keeping every…
How Do Bathrooms Work in Space? | StarTalk
We’re talking about life aboard the International Space Station featuring my interview with a guy who was there for nearly a year, Scott Kelly. I had to ask Scott the question that we all want to know the answer to: how do bathrooms work in space? Check …
Probability with discrete random variable example | Random variables | AP Statistics | Khan Academy
Hugo plans to buy packs of baseball cards until he gets the card of his favorite player, but he only has enough money to buy at most four packs. Suppose that each pack has a probability of 0.2 of containing the card Hugo is hoping for. Let the random vari…