yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Even and odd functions: Equations | Transformations of functions | Algebra 2 | Khan Academy


3m read
·Nov 10, 2024

We are asked: Are the following functions even, odd, or neither? So pause this video and try to work that out on your own before we work through it together.

All right, now let's just remind ourselves of a definition for even and odd functions. One way to think about it is: What happens when you take f of negative x? If f of negative x is equal to the function again, then we're dealing with an even function. If we evaluate f of negative x, instead of getting the function, we get the negative of the function. Then we're dealing with an odd function. And if neither of these are true, it is neither.

So let's go to this first one right over here: f of x is equal to 5 over 3 minus x to the 4th. The best way I can think about tackling this is let's just evaluate what f of negative x would be equal to. That would be equal to 5 over 3 minus, and everywhere we see an x, we're going to replace that with a negative x to the fourth power.

Now, what is negative x to the fourth power? Well, if you multiply a negative times a negative times a negative, how many times did I do that? If you take a negative to the fourth power, you're going to get a positive. So that's going to be equal to 5 over 3 minus x to the fourth, which is once again equal to f of x.

And so this first one right over here: f of negative x is equal to f of x. It is clearly even.

Let's do another example. So this one right over here: g of x. Let's just evaluate g of negative x, and at any point you feel inspired and you didn't figure it out the first time, pause the video again and try to work it out on your own.

Well, g of negative x is equal to 1 over negative x plus the cube root of negative x. And let's see: can we simplify this any? Well, we could rewrite this as the negative of 1 over x, and then I could view negative x as the same thing as negative 1 times x.

So we can factor out, or actually say we could take the negative 1 out of the radical. What is the cube root of negative 1? Well, it's negative 1. So we could say minus, we could say minus 1 times the cube root, or we could just say the negative of the cube root of x. And then we can factor out a negative. So this is going to be equal to negative of 1 over x plus the cube root of x, which is equal to the negative of g of x.

So in this case, it's g of x: g of negative x is equal to the negative of g of x.

Let's do the third one. So here we've got h of x, and let's just evaluate h of negative x. h of negative x is equal to 2 to the negative x plus 2 to the negative of negative x, which would be 2 to the positive x.

Well, this is the same thing as our original h of x. This is just equal to h of x; you just swap these two terms. And so this is clearly even.

And then last but not least, we have j of x. So let's evaluate j of... all right, all right, y. Let's evaluate j of negative x is equal to negative x over 1 minus negative x, which is equal to negative x over 1 plus x.

And let's see: there's no clear way of factoring out a negative or doing something interesting where I get either back to j of x or I get to negative j of x. So this one is neither. And we're done.

More Articles

View All
How I learned to make more friends
I’ve been very blessed to have had some absolutely amazing friendships in my life. While many of them have come and gone—some of them got married, some of them moved towns, one of them became a priest, actually—but all the amazing friends in my life have …
Adding the opposite with number lines | 7th grade | Khan Academy
So, this number line diagram here, it looks like I’m adding or subtracting two numbers. I’m starting with what looks like a positive nine. I’m starting at 0 and going nine units to the right, so that’s a positive nine. To that, it looks like I might be a…
Charlie Munger: These 3 Simple Mental Models Helped Me Become a Billionaire
Hey everyone! Today’s video is about Charlie Munger and the concept of mental models. Charlie Munger is one of my favorite investors to study. He’s vice chairman of Berkshire Hathaway, the conglomerate controlled by Warren Buffett. Buffett has described M…
Gas mixtures and partial pressures | AP Chemistry | Khan Academy
In this video, we’re going to introduce ourselves to the idea of partial pressure due to ideal gases. The way to think about it is to imagine some type of a container, and you don’t just have one type of gas in that container; you have more than one type …
Why I Dont Trust The Polls This Election #shorts
Kevin, what does your gut tell you about how tomorrow goes? A binary outcome is going to be decided by 3:00 or 4:00 in the morning. That’s my guess, like everybody else is guessing. I’m in the camp that says the swing states all go to one side or the oth…
$1 Trillion Joke | Market Cap (Short)
We’re gonna talk about the Apple one trillion dollar market cap and explain why this is such a silly number, and it’s actually based on false math. The problem is this formula for market cap, the math here, if you just multiply the spot and shares outstan…